Quality of service and product as the main factors influencing customers’ satisfaction in the clothing retailing industry in Ireland- case study of ZARA Plc.

Author: Justyna Jaskulska
Student Number: 1659616
Course: MBA in Project Management
Supervisor: Ms Luciana Lolich
Word Count: 22,800

August, 16th 2013
Abstract

This study intends to rank the dimensions and identify the best predictors of overall service and product quality and customer satisfaction resulting from both. To achieve this, a theoretical and empirical study was conducted. Different theories, concentrated on customer satisfaction, quality itself, as well as service and product, were reviewed to provide the background for the analysis.

In order to have the statistic data for this research, a questionnaire based on SERVQUAL and Garvin’s eight dimensions of product quality was created and distributed using a snowball method. As a result, 100 respondents answered the questionnaire and the data obtained from them was transferred to SPSS 15.00.

The last two parts of this research analyse the results of the questionnaires as well as provide some recommendations for management.

Key words: Customer Satisfaction, Service quality, SERVQUAL, Product quality, Clothing Retailing Industry.
Declaration

I hereby would like to confirm that this material, which we now submit for assessment on the programme of study leading to the award of MBA in Project Management, is a presentation of my original research work.

Wherever contributions of others are involved, every effort was made to indicate this clearly, with due reference to the literature, and acknowledgement of collaborative research and discussions.

The work was done under the guidance of Ms Luciana Lolich at the Dublin Business School.

Signed: Justyna Jaskulska

Date: 16.08.2013
Acknowledgments

First of all, I would like to thank The Dublin Business School for giving me the opportunity to work on this research.

To my parents for support and constant push into the right direction. You have been very understanding although demanding at times but then I value that a lot. I want to thank you for reminding me where my goals lie and raising me to the stage where I was able to set my own goals.

Special thanks to my fiancé Alessandro for his personal support and great patience at all times.

Finally, to my supervisor Ms Luciana Lolich for her very valuable guidance and support throughout this term.

16th August, 2013

Dublin, Ireland

Justyna Jaskulska
Table of Contents

Declaration .. i
Abstract ... ii
Acknowledgements .. iii

1. **Introduction** ... 1
 1.2 Background ... 1
 1.3 Problem Statement, Structure and the Purpose of the Study 5
 1.4 Objectives of the Study ... 8
 1.5 Purpose of the Study .. 9
 1.6 Retailing Industry ... 10
 1.6.1 Retail Sales in Ireland ... 10
 1.6.2 ZARA (Inditex) ... 11
 1.6.3 Global Sales ... 12
 1.6.4 Challenges to overcome for ZARA ... 13
 1.6.5 Future challenges ... 14

2. **Literature review** ... 15
 2.1 Introduction .. 15
 2.2 Customer Satisfaction ... 15
 2.3 Satisfaction & Loyalty ... 17
 2.4 Theoretical frameworks .. 18
 2.4.1 Customer perceptions of Quality- Customer Satisfaction Model... 19
 2.5 Quality ... 21
 2.5.1 Approaches to define Quality .. 22
 2.5.2 Service Quality vs. Product Quality .. 23
 2.6 Service Quality- characteristic .. 25
 2.6.1 SERVQUAL- the model & critique ... 28
 2.7 Product Quality .. 31
 2.7.1 Dimensions of product quality ... 31
 2.7.2 Relationship between product quality and customer satisfaction ... 38
 2.8 What determines satisfaction? How needs shape customer behaviour? 40
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td></td>
<td>Chapter Summary</td>
<td>41</td>
</tr>
<tr>
<td>3.</td>
<td>Methodology</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Research Questions</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Structure of research methods</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Research Philosophy</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Research Approach</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Research Strategy</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Research choice</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Time Horizons</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Sample</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Techniques</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>3.3.7.1</td>
<td>Descriptive Statistics</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>3.3.7.2</td>
<td>Reliability Data Analysis</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>3.3.7.3</td>
<td>Factor Analysis</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>3.3.7.4</td>
<td>Regression Analysis</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Ethics</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Researcher bias</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>4.</td>
<td>Data Analysis</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Demographic Profile</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Descriptive Statistics</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>4.3.1</td>
<td>SERVICE</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Descriptive Statistics</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Reliability Data Analysis</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>Determinants of Service Quality in Clothing Industry</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>4.3.1.4</td>
<td>Regression Analysis</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>4.3.2</td>
<td>GARMENTS</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Descriptive Statistics</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Reliability Data Analysis</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Determinants of Garments Quality in Clothing Industry</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>Regression Analysis</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Overall Customer Satisfaction</td>
<td></td>
<td>86</td>
</tr>
</tbody>
</table>
4.3.3.1 Descriptive Statistics 86
4.3.3.2 T-Test (Gender & Nationality) 86

5 Conclusions & Recommendations 88
 5.1 Introduction .. 88
 5.2 Research questions - conclusions 88
 5.3 Recommendations ... 93
 5.4 Limitations and recommendations for further research 94

6 Reflections on learning 96

Bibliography ... 103

Appendices .. 112
 Appendix A- Individual Customer Satisfaction 112
 Appendix B- Goods vs. Services 114
 Appendix C- Determinants of Service Quality 115
 Appendix D- E-mail sent to respondents 117
 Appendix E- Draft version of survey 118
 Appendix F- SPSS Data 126
 Appendix G- Glossary of Statistical Data 152
 Appendix H- Determinants of service quality 154
 Appendix I- Determinants of garments quality 155
 Appendix J- Additional Statistics- Service 156
 Appendix K- Additional Statistics-Garments 158
 Appendix L- Approaches to Quality 160
 Appendix M- ZARA focus on Customers 164
List of Figures

1.1 Master Thesis Structure 6
1.2 Sales by brand (Inditex) 11
1.3 Global Platform Sales year 2011 13
1.4 Global Platform Sales year 2012 13
2.1 The relationship between customer satisfaction and loyalty 17
2.2 Customer perception of quality 20
2.3 Eight dimensions of product quality 32
2.4 Purchase intentions initial model 39
3.1 The conceptual model based on the research objectives 48
3.2 Structure of research methods 51
3.3 Deductive approach model 55
6.1 Kano attractive quality 99

List of Tables

4.1 Demographic Data Summary 64
4.2 SERVQUAL- Descriptive Statistics 65
4.3 Reliability Statistics- SERVQUAL 66
4.4 Reliability Data Analysis for SERVQUAL 67
4.5 Summary Item Statistics for SERVQUAL 67
4.6 Reliability Statistics- SERVQUA 68
4.7 Communalities- SERVQUAL 69
4.8 Rotated Component Matrix- SERVQUAL 70
4.9 Reliability Statistics for new scale 71
4.10 Determinants of service quality in the retailing clothing industry 71
4.11 New Determinants of service quality 72
4.12 Variables used in Regression 73
4.13 Overall fit of the model 73
4.14 ANOVA 74
4.15 Coefficients for services 75
4.16 Predictors of service quality in order of importance 76
4.17 Garvin’s Garments Quality- Descriptive Statistics 77
4.18 Reliability Statistics- Garvin’s dimensions 78
4.19 Reliability Data Analysis for Garments quality 78
4.20 Summary items statistics for Garments Quality 79
4.21 Reliability Statistics- Garvin’s model 79
4.22 Communalities- Garvin’s model 80
4.23 Rotated Component Matrix 80
4.24 Reliability Statistics for new scale 81
4.25 Determinants of garments quality in the retailing clothing industry 81
4.26 New Determinants of garments quality 82
4.27 Variables used in Regression 83
4.28 Overall fit of the model 83
4.29 ANOVA 84
4.30 Coefficients for garments 84
4.31 Predictors of garments quality in order of importance 85
4.32 Descriptive Statistics- Overall Customer satisfaction 86
4.33 T-Test- Gender 86
4.34 T-Test-Nationality 87
1. Introduction

1.1 Introduction

This chapter presents the reader with an overview of the entire thesis. It covers the Background to the Study, Problem Statement, Structure and the Purpose of the Study, Research Questions as well as the Overview of Retailing Industry in Ireland.

1.2 Background

Most companies today face a two-fold dilemma. In many product and services categories, competition based on both price and quality is increasing. Customers, faced with so many good choices, are making decisions based on a variety of complex factors (The Economist, 2007). They are the most essential part for the existence of every firm in the world of business and it seems quite obvious that firms can be no longer indifferent to their customers' expectations and demands. Companies must direct all their activities and powers towards the customer satisfaction, because the customers are the only source for return on investment (ROI) (Nazari and Divkolaei, 2012).

Billington &Nie (2009) argue that a successful company typically starts with a deep understanding of customer needs is a segment and translates these needs into a value proposition. Then it develops its supply chain capability to deliver on its value proposition. The authors further debate that in a retail business; a customer wants the right product, at the right time, in the right place, and at the lowest price.
To translate these needs into supply chain capabilities, mass retailers need to consider the product variety, the type of brand, and the cost of goods sold (Billington & Nie, 2009). To know more about their customers, to tailor their offering more specifically, learning the customers become an essential marketing tool in attracting and retaining customers. The companies are looking to entice their consumer to buy by offering more benefits rather than the basic product. Therefore the idea of associating service and product quality with customer satisfaction has been growing in its importance.

The phenomenon of customer satisfaction has been recognised as a significant factor in the management processes and it has been extensively studied for the past few decades. The subject of this study is based on ZARA Plc., and the justification for choosing this company is that it gained a special attention when arrived to Ireland, and the researcher’s first employment was as a sales assistant in one of ZARA’s boutiques in Dublin. Moreover, the company, as explained later in this section, is one of the most fascinating clothing retailers with its vertical integration. Unlike other apparel retailers, ZARA manages most of the steps on the supply-chain (Capell, 2008).

ZARA entered Polish market in 1999 (Lopez et al., 2009), however few years ago when the researcher still lived in the home country, ZARA had its shops only in the few, main cities and the clothes were not affordable for the ‘average citizen’ taking into account the middle class incomes. Whereas the Polish capital is marked by a strong luxury to mid-range segment, however the share of this segment becomes lower and lower as the relative importance and purchasing power of a city decrease.

While ZARA was the part of the high price segment in Poland, and was perceived as a luxurious brand at the time, it was considered mid-range and accessible to the general population in Ireland.
Fashion has a short life, especially at ZARA that has revolutionized the fashion industry with its less than two weeks turnaround. On average that is the time that ZARA need to spot, design, and ship one of the 300,000 new stock keeping units (SKUs) it sells in stores each year (Crofton & Dopico, 2007). Thus, it routinely beats the high-fashion houses to market with nearly identical products that are made with less expensive fabric at much lower prices (Ferdows et al. 2004). This is undoubtedly merit of ZARA’s creativity in supply-chain design. ZARA’s vertical integration of design, just-in-time manufacturing, delivery and sales; flexible structure; low inventory rule; quick response policy and advanced information technology enable a quick response to customer’s changing demands (Johnson et al., 2011). A completely new piece of clothing can be delivered in less than four weeks and that is much faster than the competition. It was estimated that about 11,000 items are launched every year (Hemantha, 2012).

Additionally, rather than chase economies of scale, ZARA manufactures and distributes products in small batches twice a week avoiding large inventories and creating a "climate of scarcity and opportunity" (Fedrows et al., 2004). ZARA manufactures 60% of its own products, and by owning its in-house production is able to be flexible in the variety, amount and frequency of the new styles they produce. The customers no longer have to wait for the February’s Fashion Week, to get a glimpse at what will be available in July from high-street designers like Marc Jacobs, Ralph Lauren or Dolce and Gabana (Capell, 2008). This is another factor that makes the brand attractive for conducting the study; owing to the fact that 85% of ZARA production is done through the season allows the chain to provide its costumer continuously with the newest trends (Hemantha, 2012).
In Ireland ZARA is considered as one of the most popular clothing brands with a very fresh view on fashion and selling methods than other companies within its industry and it is offering an original shopping experience to its customers.

ZARA’s production cycle starts with customers’ judgements on the new designs of clothes and the information collected by staff members who travel to fashion cities, observing people on the streets (Hemantha, 2012).

Additional factor that makes ZARA an interesting subject for this research is that with the time factor and the store as a source of information, the company demonstrate high customer- orientation. ZARA tries to adapt to market demands, aims to deliver a unique service to the customer. The quality of customer service and other variables like the music, temperature, and layout are evaluated by using mystery shopper. When it comes to pricing, ZARA also follows a market- based pricing strategy which sets the target prices that the buyers are willing to pay (Hemantha, 2012). Inditex has conquered the world by putting the customer at the centre of the story, and this customer centred approach is making the brand even more interesting to investigate how the customers’ perceive ZARA’s quality and to which extent they are satisfied with quality of the service and products. Therefore it came to the researcher attention and raised an interest in finding out how other shoppers are satisfied with the company and what determines such satisfaction.

The general purpose of this study is to rank the quality factors perceived to be most important in relation to the use of ZARA services and products in Ireland. To measure customers’ satisfaction quantitative research will be taken with the questionnaire based on the SERVQUAL which is the instrument that identifies five broad quality dimensions in service environments (Parasuraman et al. 1988).
Satisfaction with the product quality will be then evaluated with the help of eight dimensions of product quality proposed by Garvin in 1984. These critical categories of quality can serve as a framework for strategic analysis: performance, features, reliability, conformance, durability, serviceability, aesthetics, and perceived quality. A product can rank high on one dimension of quality and low on another, additionally any improvement one may be achieved only at the expense of another. According to Garvin (1987) this interplay makes strategic quality management possible; the challenge to managers is to compete on selected dimensions.

1.3 Problem Statement, Structure and the Purpose of the Study

As indicated in the previous sections, ZARA has been very successful for the last decades. However, the fashion industry is highly dynamic and competitive and raises several challenges related to the company’s interest of expanding further into a worldwide company. The companies must understand the importance of customer satisfaction as well as service and product quality concepts if they want to remain competitive and grow. In today’s competitive environment delivering high quality products and service are the keys to a sustainable competitive advantage. Customer satisfaction does have a positive effect on an organization’s profitability. Satisfied customers form the foundation of any successful business as customer satisfaction leads to repeat purchase, brand loyalty, and positive word of mouth (WOM) (Angelova and Zekiri, 2011).
This led to the following problem statement:

Which dimensions of service and product quality generate highest level of customer satisfaction in Zara?

In order to provide an eloquent answer to the problem statement a carefully considered thesis structure needs to be introduced.

Figure 1.1: Master thesis structure

As illustrated in Figure 1.1 above, the thesis is divided into six chapters. In the Chapter One the motivation for taking this study is briefly justified.
The concept of business within fashion industry is explained with some focus on the competitive side within the industry and competitive advantage gained through excellent service and product quality. In order to understand the clothing industry in Ireland the Retailing Industry section with the special consideration of retail sales in Ireland were presented.

Additionally, the company overview is included in the Introduction Chapter which describes ZARA historical background, business plan, main criticisms; future challenges as well as evaluates the company’s financial performance with the special emphasis on the last two years. This will help to gain a better understanding of ZARA, its expansion, and how the company has developed over time and responded to changes in the market.

Chapter Two discusses available academic literature with the special consideration of customer satisfaction concepts (dependent variable) and factors such as service quality and product quality (independent variables). The essence of those variables is presented in details, the circumstances that give rise to satisfaction, and the benefits to the company of having satisfied customers. Concepts and Theoretical Frameworks: customer, customer satisfaction and its significance, service and service quality and its dimensions, product quality and its dimensions are presented in this chapter.

The subject of this study is shown with the special consideration, the general background and methods of operations of this company are presented with some stress on the competitiveness level in the markets it operates in. In this chapter the framework of this study is presented with justification to why this framework is most suitable to the purpose of this research. In addition, research theories, objectives, and scope of the study are specified.
Chapter Three focuses on the methodology which has been chosen for this study. The layers of the research process are described with the help of research onion which was introduced by Saunders, Lewis and Thornhill (2009). The outer layers of the onion contain thinking about research philosophies and approaches. The central layers reflect the need to consider research strategies and choices; while at the centre of the onion data collection and analysis are the central concern (Saunders et al., 2009).

Moreover, this chapter discusses how satisfaction and factors are to be researched in order to gain an answer to issues formulate for this research.

Chapter Four is presentation of data and analysis of results, and conclusions with further recommendations for management as well as limitations and recommendations for further research that are presented in Chapter Five. Finally, Chapter Six consists the reflections on learning and lessons learned.

1.4 Objectives of the Study

Based on the literature reviewed, the following are the specific objectives of this study:

1. To apply, rank and describe the impact of SERVQUAL factors on customer satisfaction in ZARA Ireland.

2. To apply, rank and describe the quality dimensions of ZARA products in Ireland and their impact on customer satisfaction using Garvin eight dimensions of Product Quality.

3. To measure and describe the overall customer satisfaction with ZARA services and products in Ireland.
By answering the above questions it is aimed to contribute to the study of the relationships between customer satisfaction and service quality and customer satisfaction and product quality. Therefore by conducting this research it will be possible for the author to confirm if and to which degree customer satisfaction is related to the service and product quality dimensions for ZARA Plc.

1.5 Purpose of the study

The purpose of this study is to examine the relationships between customer satisfaction and both service quality and product quality in the clothing retailing industry in Ireland. To fulfil the gaps and to provide valuable information to ZARA management about the customer perception of brand quality and both: products and service, this research will help to identify the factors that influence the customers’ repurchase intention. Additionally, the results can provide a great help to the producer as to which actions need to be taken to put the company in a better competitive position, and help with sustaining competitive advantage in the mid-range clothing sector in Ireland. This exploratory study is unique in terms of assessing both quality of service and product in apparel industry in Ireland, and to date, as far as the research concerned, no similar study has been carried out.

In developing the retail service quality scale, the general SERVQUAL model introduced by Parasuraman et al. (1988), has been adopted. The SERVQUAL scale is one of the first measures to be developed specifically to measure service quality, and therefore since its introduction, it has been tested and applied in diverse service settings including apparel retailing (Gagliano and Hathcote, 1994).
The SERVQUAL scale has been chosen for this research over the Retail Service Quality Scale (RSQS) as the applicability of the RSQS scale has not been tested in apparel speciality stores in Irish context. Moreover, taking into account the time constraint to this research the use of SERVQUAL scale is recognized by the author as the safest approach. From the quality of the product this study intends to justify of how eight dimensions of product quality affect customer satisfaction to product. Garvin Eight Dimensions of Product Quality scale (1984) has been used to assess product quality as it covers a broad range of concepts and shows the product dimensions from basic to additional but equally important.

1.6 Retailing Industry

1.6.1 Retail Sales in Ireland

The retail sector is Ireland’s largest employer with over 14.5 per cent of Ireland’s total workforce, and accounts for over 10 per cent of Ireland’s GDP.

In the recent years sales have fallen sharply, declining by 30 per cent since their peak in 2008.

The Irish Retail Industry Performance Review (Retail Excellence Ireland, 2012) shows the worst performing sectors included garden centres, down 19.9 per cent compared to the same quarter last year, furniture and flooring, down 9.5 per cent and ladies’ fashion, down 7 per cent. The biggest challenge to recovery in the retail sector is weak domestic demand. Consumer spending has fallen every year since 2008 and Irish Business and Employers’ Confederation (IBEC) predicts that it will fall by a further 2 per cent this year (IBEC, no date).
1.6.2 ZARA (Inditex)

ZARA is a Spanish clothing and accessories retailer based in Galicia, and was founded in 1975 (ZARA.com). The company was expanding in the domestic market during the 1980s by opening stores in all Spanish cities with a population greater than 100,000 inhabitants (Ghemawat and Nuneo, 2003). Internationally, ZARA started its expansion by opening the first store in the city Oporto in Portugal in 1988.

ZARA is the flagship chain store of the Inditex group; the fashion group expanded over the last 30 years and has built a brand portfolio mainly through brand acquisition. Each chain of the stores in Inditex group is targeted at a specific segment: Massimo Dutti – young businessmen; Pull & Bear – elegant male clothing; Bershka – elegant fashion for young women; Brettos – trendy young suburban women; Oysho – lingerie; Stradivarius – youthful fashion; Kiddy’s Class – trendy children (Kumar, 2006). By 2012, ZARA made up close to 70 per cent of Inditex sales and led the group’s international expansion.

Figure 1.2 Inditex-Sales by brand

Source: Inditex, FY2012 Results Presentation, 13 March 2013
Only in 2012- 482 new stores have been opened, making for a total worldwide of 6,009 (rte, 2013). The group’s strongest brand- ZARA is one of the world’s most successful fashion retailers operating in 89 countries and with 1,751 stores (9 of which are based in Ireland) (Inditex, 2011).

According to Amancio Ortega, founder of Inditex, ZARA’s aim is to democratize fashion by offering the latest fashion in medium quality at affordable prices. The company estimates that customers visit store 17 times a year on average, compared to merely four visits for other fashion firms (Hemantha, 2012). According to Inditex Annual Report (2011) for Inditex business model customers are at the heart of any activity (Appendix M).

ZARA outlets are situated in main commercial areas and the interiors are designed to create a unique atmosphere with attractive window displays. The firm spends only 0.3% percent of its annual turnover on advertising, normally at the beginning of the sales season or the occasion of a new store opening. The store is considered its most effective communication tool (Ghemawat et al., 2003). The fashion designer- Louis Vuitton, described ZARA as ‘possibly the most innovative and devastating retailer in the world (Hume, 2011).

1.6.3 Global Sales

Inditex, the Spanish clothes retailer which owns ZARA store chain, has noted a 22 per cent increase in net profit in 2012. This increase was mainly as a result of growth in Eastern Europe and in online sales in Canada and China (rte, 2013).
According to Inditex reports, the profit for last year grew to €2.36 billion and sales were up by 16 per cent to €15.9 billion, with Asia share growing to 20 per cent from 18 per cent and the Americas expanding to 14 per cent from 12 per cent as per below diagrams.

Figures 1.3 & 1.4: Global Sales Platform- years 2011 & 2012

<table>
<thead>
<tr>
<th>Global Sales Platform- FY2012</th>
<th>Global Sales Platform- FY2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Europe ex-Spain</td>
<td>* Europe ex-Spain</td>
</tr>
<tr>
<td>* Spain</td>
<td>* Spain</td>
</tr>
<tr>
<td>* Asia & RoW</td>
<td>* Asia & RoW</td>
</tr>
<tr>
<td>* Americas</td>
<td>* Americas</td>
</tr>
</tbody>
</table>

Store sales: Includes sales in OMS and franchises

Source: Inditex, FY2012 Results Presentation, 13 March 2013

1.6.4 Challenges to overcome for ZARA

According to experts in the clothing industry "Low price plus expanding too fast will definitely lead to the decline in quality of a company's products. The company will have to reduce the cost of materials and human resources as market costs increase" (Global Times, 2011). Too fast expansion in China led ZARA, into quality scandals that occurred several times since August 2009. The Beijing Consumers’ Association has called ZARA out for ignoring the “rights and interests of domestic consumers” and is among 20 well-known brands that were declared substandard after a recent round of quality tests by the watchdog group.
Clothes sold by ZARA flunked three categories, more than any other brand examined. In addition to floundering in color-fastness tests, the trousers also exceeded legal limits of formaldehyde and alkalinity, both of which can irritate skin (Chua, 2011). In the short term, these scandals are not likely to affect ZARA sales. Consumers would rather care for the style of some clothes than their quality. He added that the quality is a factor that can ensure the purchase instead of one that can stimulate purchasing behaviour (Global Times, 2011).

1.6.5 Future challenges

Most importantly Inditex plans to continue its aggressive expansion in particular into the Russian market, where it has been opening 50-60 new shops annually over the last few years, and would like to maintain this place. Only by September 2012, Inditex had expanded its network in Russia to 274 stores, including 58 ZARA shops and in 2013 the company is planning to open a ZARA shop in Vladivostok, which is a milestone for the company (Kreknina, 2012). Inditex plan to grow in the Americas by multi-concept expansion: Massimo Dutti in US/Canada, Stradivarius in Mexico and ZARA Home in Brazil. Furthermore, there are the plans to expand its online sales: US for ZARA, Massimo Dutti and ZARA Home/Canada for ZARA as well as ZARA in Russia (GrupoInditex press Annual, 2012).

Additionally, the group is planning to further enhance the customer in-store experience, by creating larger, new stores and stronger visual merchandising.
2. Literature Review

2.1 Introduction

The literature review chapter will explore the theoretical side of the relationship between both service and product quality and satisfaction. The first part will look at the definition of the satisfaction and past researches that explored the major antecedents. It will be also briefly presented the correlation between satisfaction and loyalty which then may lead to profitability. Final part focuses on the aspect of the service and its difference to product. In this part the framework for this research will be presented and the antecedents explained with a main focus on both service quality and product quality, which will be explored through SERVQUAL and Garvin’s Eight Dimensions of quality, respectively.

2.2 Customer Satisfaction

Customer satisfaction is the individual consumer’s perception of the performance of the product or service in relation to his or her expectations (Schiffman & Kanuk, 2010; Armstrong & Kotler, 2010). Oliver (2010) thinks that satisfaction is the customer’s fulfilment response. It is a judgement that a product or service feature, or the product or service itself, provides a pleasurable level of consumption-related fulfilment. Zeithaml et al. (2009) argue that failure to meet customer needs is assumed to result in dissatisfaction with the product of service.
In today’s competitive market where companies are becoming similar with its offerings and range of products it is crucial that they provide a differentiation through the delivery channel or product itself. Nevertheless to achieve the desired competitiveness companies would try to over deliver to its promises and that will take place when total product performance exceeds expectations of a given consumer which then may result in high satisfaction. Hoyer and MacInnis (2001) noticed that satisfaction can be associated with feelings of acceptance, happiness, relief, excitement, and delight. Satisfied customers will repeat the purchase, probably be brand loyal, and convey positive word-of-mouth advertising, and all these will enhance sales (Almossawi, 2012). Customer’s satisfaction may also be associated with feelings of ambivalence when there is a mix of positive and negative experiences associated with the product or service (Zeithaml et al., 2009). According to Schneider and Bowen (1999), most customers range from moderately dissatisfied to moderately satisfied and it is most likely that with additional factors, like: better price or more convenient store location the customer will eventually defect. Customers’ satisfaction and experience need to be continually enhanced, and even then it is often not enough to retain them because even satisfied customers are not always loyal, and what more defect at a high rate. Heskett et al. (2008) is of the opinion that the relationship between scores and loyalty depend on whether customers are “very satisfied” or only “satisfied” with the product or service. Customers being “very satisfied” are 5 times more likely to repurchase. The figure 2.1 divides the customers into three groups, subdivided into 3 different zones, and the service provider must try to achieve zero or a minimum number of customer defections, as this will lead to more profitability in the long run. Review of individual customers’ behaviour available in Appendix A.
Figure 2.1 The relationship between customer satisfaction & customer loyalty

Satisfaction is a dynamic, moving target that may evolve over time, and may be influenced by a variety of factors, and these will be further investigated in this research with respect to well-known retailer- ZARA.

2.3 Satisfaction and Loyalty

Customer loyalty plays a critical role in an organization’s success, because only loyal customers provide firms a consistent source of revenue (repeat and increased purchases) and for cost reduction (less promotional expenses), thus increasing profitability (Li et al., 2010). Studies indicate that at the customer level there are links such as customer delight leading to customer loyalty (Oliver et al., 1997); trust and satisfaction are linked to customer loyalty (Liu et al., 2011), and customer information characteristics are also strongly linked to the creation of customer loyalty (Leenheer et al., 2008).
Jones et al. (1995) argue that merely satisfying customers who have the freedom to make choices is not enough to keep them loyal. The only truly loyal customers are totally satisfied customers. Previous research in contradiction to recent studies, have found that the customer satisfaction and customers’ repeat purchase behaviour may not always result in customers loyalty (Jacoby et al., 1973).

2.4 Theoretical frameworks

Customer satisfaction has been of interest of marketing academics over the past three decades. Marketing literature provides many different models that investigate customer satisfaction. As all these models are important to marketing practitioners and there is no one generic framework for customer satisfaction, these the most important for the scope of this research models will be critically evaluated with special consideration to the model which will be the frame for this study.

There are many factors that affect customer satisfaction. According to Hokanson (1995) these factors include friendly employees, courteous employees, knowledgeable employees, helpful employees, accuracy of billing, billing timeliness, competitive pricing, service quality, good value, billing clarity and quick service. Hokanson (1995) postulates that the use of this model expects heavy interaction between variables, and would be inappropriate if the elements of customer satisfaction were discrete and separable.

During the researches in the 90’s several factors have been identified that play a significant role in building customer satisfaction. Taylor and Baker (1994), Rust and Oliver (1994) explain in detail those antecedents.
The service quality has been identified as a critical factor influencing customer satisfaction and thus consumers’ purchase intentions. Taylor & Baker (1994) in their study investigated the nature of the relationship between service quality perceptions and consumer judgments in the formation of consumers’ purchase intentions. Rust & Oliver (1994) think that an understanding of these relationships is necessary to effective management.

Better understanding of how the perception of service quality and consumer satisfaction judgments influence one another in the formation of consumers’ purchase intentions is crucial in services marketing discipline.

2.4.1 Customer Perceptions of Quality and Customer Satisfaction Model - Zeithaml et al. (2009)

Today’s big organizations try to better understand their customers, their needs, expectations and whole decision making processes; what make them buy this particular product or choose that service over another?

Model introduced by Zeithaml et al. (2009) will be most appropriate to examine the nature of this research since investigates in detail quality of service and product, and how they affect customer satisfaction. Whereas four general antecedents based on work of Taylor & Baker (1994) and Rust & Olivier (1994), are very broad and would require more complex research. On the other hand, the satisfaction model proposed by Hokanson (1995) is too detailed, and focuses largely on employees and their impact on customer satisfaction rather than quality of service and product itself.
The following concept presented by Zeithlam et al. (2009, p.103) clearly shows that the satisfaction is determined by the product or service specific features, customer perception of service and its quality, product quality and price. Significant impacts on the satisfaction have also personal factors (i.e. customer’s mood at the time of the purchase) or situational factors like family or friends opinions about service or product. Service quality is a focused evaluation that reflects the customer’s perception of the ten dimensions.

For the purpose of this research eight determinants adopted from Parasuraman (1985) will be further evaluated, and these dimensions will be then used as a base for the questionnaire to measure level of customers’ satisfaction with ZARA services.

Figure 2.2 Customer Perceptions of Quality and Customer Satisfaction

Source: Zeithaml, Bitner and Gremler (2009)
The aim of this research is to explore the impact that the quality of service and product may have on customers’ satisfaction. The researcher is not intending to concentrate on the factors that stimulate customers’ decision making process or price, and therefore the situational, personal factors as well as price will be excluded from the research framework.

2.5 Quality

The word *quality* means different things to people according to the context. Quality is an important strategic concept that can provide a company with lasting competitive advantage in the market (Garvin, 1990). Koskennurmi-Sivonen & Pietarila (2009) argue that quality, as a concept, is multidimensional and relative, and thus, difficult to perceive. However, there is nothing fundamentally unclear or mystic about quality if we keep in mind that quality can be seen from different viewpoints and if we understand its relativity.

Quality not only plays a significant role in determining and influencing customer satisfaction (Abdullah et al., 2010), but is perhaps the most important and complex component of business strategy. Firms compete on quality, customers search for quality, and marketers are transformed by quality (Golder et al., 2012).

Several studies have demonstrated that customer satisfaction and loyalty are dependent on the customer’s perception of the quality of goods or services provided, and therefore industries pursue quality in product and service in order to satisfy their customers (Gorst et al., 1998).

During the last two decades, the set of quality management systems and standards, such as QCC, ISO 9000, TQM, etc. have been implemented by different industries.
All of them were aiming to achieve customer satisfaction and to win their long-term trust by creating products and supplying services that fulfil customer requirements (Kano et al., 1996).

2.5.1 Approaches to defining quality

Brown et al. (2001) argue that quality is not a one-dimensional concept, and it is very natural for managers to understand quality in different ways: managers perceive quality in the context of their own work environment.

Garvin (1988) presented five different approaches to understanding quality as follows: transcendent, product based, user based, manufacturing based and value based (reviewed in Appendix L). According to Garvin (1984) most existing definitions of quality fall into one of these five categories. Fiore et al. (1992) argue that the quality of an apparel product can be approached either a manufacturing-based perspective or a consumer- based perspective. In Manufacturing-based approach quality is based upon conformance to manufacturing specifications pre-determined by managers or product developers (Crosby, 1979). In a consumer-based approach to quality is more subjective and more difficult to verify (Zeithaml, 1988). As the effect, the customers and manufacturers (product developers) may define quality differently, and the established product may not fully satisfy the customer ‘quality’ expectations (Fiore et al., 1992). Managers need to show that quality has a substantial impact on the bottom line of the company, and by improving quality must enable the company to enhance key measures of performance such as productivity, cost reduction, profitability, and market share (Brown et al., 2001).
2.5.2 Service Quality vs. Product Quality

Zeithaml et al. (2009) debate that there is general agreement that differences between goods and services exist and that the distinctive characteristics result in challenges for managers of services. Service quality is defined as the comparison customers make between their expectations about a service and their perceptions of the actual service performance (Parasuraman et al., 1988, 1985). Service quality is much more difficult to evaluate than the quality of goods with the purchase of which, the consumer employs the tangible cues like: colour, label, style, packaging, and fit. When purchasing services tangible elements are limited to the provider’s equipment, personnel and facilities (Parasuraman et al., 1985). Pre-purchase evaluation of service characteristics by consumers is differing from products because of their intangibility, heterogeneity, inseparability, perishability (Appendix B). The service characteristics have created problems of definition and measurement of service quality for marketers (Bebko, 2000).

Intangibility

It is the most basic distinguishing characteristic of services, as services are performances or actions rather than objects, they cannot be seen, felt, tasted or touched in the same manner tangible goods can (Zeithaml et al., 2009). Miller & Foust (2003) argue that this perception presents services marketers with special problems especially in positioning and promoting their brands. The marketers can overcome the problem of intangibility, but they need to develop and employ strategies for overcoming consumers’ perceived intangibility of their offerings in order to produce better consumer understanding and alleviate their perceived risk. Shostack (1977) criticized intangibility because there are usually many tangible elements involved in a service performance.
She recommended the set of strategies that were helpful with associating the service with tangible cues or symbols as a means for overcoming the intangible elements in positioning and promotion. The firm’s brand names, brand marks, and marketing communications are tangible elements that convey information about both the offerings attributes and benefits and help customer to associate intangible service with some tangible elements.

Heterogeneity

Services are performances, produced by humans, and no two services will be exactly the same. Heterogeneity also results because no two customers are precisely alike, each customer will have different expectations and experience the service in very unique way (Zeithaml et al., 2009). Heterogeneity is a problem with those services with high labour content and is very challenging for every business service tasks. Heterogeneity has been criticized in literature as not being characteristic of services because of the countless possibilities of standardization in services which result in a reduction of heterogeneity (Lovelock and Gummesson, 2004).

Inseparability

The concept of inseparability was introduced by Say in 1836. From that time the production and consumption were perceived as an inseparable part of the service (Moeller, 2010). Whereas most goods are produced first, then sold and consumed, most services are sold first and then produced and consumed simultaneously. Customers are often present while the service is being produced and may even take a part in the production process as co-producers of the service. During the service production, customers will also interact with each other, and thus may affect each other’s experiences (Zeithaml et al., 2009).
The attribute of inseparability was criticized by Lovelock and Gummesson (2004). They concluded that there are far too many separable services to justify the generalization that inseparability is a distinctive characteristic of services.

Perishability

The attributes of perishability have been noted a long time ago, as mentioned by Adam Smith in 1776 (Moeller, 2010). This quality refers to the fact that services cannot be saved, stored, resold, or returned. Perishability is in contrast to goods that can be stored in inventory, resold another day or returned if the customer is not satisfied (Zeithaml, et al., 2009).

Perishability or the restricted option to stockpile or inventory services have also been criticized. Edvardsson et al. (2005) relate the criticism of the restricted possibilities of storage of services to the fact that memories of service provision can be kept for years. Lovelock (2000) claims that time-defined perishability of performance should be differentiated from continued benefits.

2.6 Service Quality- characteristic

Service quality is defined as the extent to which a service meets customers’ needs or expectations (Lewis & Mitchell, 1990; Wisniewski & Donnelly, 1996). Perceived service quality is subjective. It is the customers who evaluate service quality and it therefore has to be researched from their point of view (Zeithaml, Bitner and Gremler, 2013).

Efforts in defining and measuring quality have come largely from the goods sector. According to the prevailing Japanese philosophy, quality is "zero defects-doing it right the first time."
"Edvardsen et al. (1994) argue that the starting point in developing quality in services is analysis and measurement. Measurement allows for comparison before and after changes and for the establishment of clear standards for service delivery.

Knowledge about goods quality, however, is insufficient to understand service quality. According to Crosby (1979) quality can be defined as "conformance to requirements." Garvin (1983) measures quality by counting the incidence of "internal" failures (those observed before a product leaves the factory) and "external" failures (those incurred in the field after a unit has been installed).

Service quality is a critical element of customer perceptions, especially in the case of pure services (for example health care, financial services), where it is the dominant element in customers’ evaluations. Customer service or services can be also offered in combination with a physical product (for example retail) (Zeithaml et al., 2013).

The SERVQUAL approach (reviewed in the next section) is the most common method for measuring service quality. According to Parasuraman et al. (1985, 1988) the attributes of customer service can be grouped into ten categories—drivers, as perceived by service provider and the consumer namely; access, communication, competence, courtesy, credibility, reliability, responsiveness, security, tangibles, and understanding the customer and these formulate a service quality framework, SERVQUAL (Appendix C). Identified ten dimensions associated with service quality from which eight were used for this research are briefly discussed below. Full review of determinants of service quality is available in Appendix C.

1. Reliability is defined as the ability to perform the promised service dependably and accurately, that means that the company delivers on its promises about delivery, problem resolution and pricing.
This dimension is extremely important for customers and they want to do business with companies that keep their promises (Zeithaml, Bitner & Gremler, 2013).

2. **Responsiveness** is the willingness to help customers and to provide prompt service. This dimension is communicated to customers by the length of time they have to wait for assistance, answers to questions, or attention to problems (Zeithaml et al., 2013).

3. **Courtesys** is described as politeness, consideration, and friendliness of service personnel (Kasper et al., 2006).

4. **Communication** involves keeping customers informed and listening to customers. It also involves explaining the costs associated with service, explaining the service process, and assuring the customer that a problem will be handled (Kasper et al., 2006).

5. **Credibility** refers to believability and honesty (Kasper et al., 2006). It involves having customer’s best interest at heart. Contributing to credibility is a company reputation, characteristics of the contact personnel (Parasuraman et al., 1985).

6. **Security** is described by Kasper et al. (2006) as’ freedom from danger’, risk, or doubt. It also involves physical safety, financial security and confidentiality.

7. **Understanding/ knowing the customer** means making the effort to understand the customer’s needs. Customers want to feel understood, unique and special to organization (Zeithaml et al., 1996).
8. **Tangibles** are defined as the appearance of physical facilities, equipment, personnel, and communication materials. Tangibles provide physical representation of images of the service that customers will use to evaluate quality (Zeithaml et al., 2013).

The determinants of SERVQUAL represent how consumers organize information about service quality in their minds (Zeithaml et al., 2013). The determinants range from easy to evaluate (offering high in search properties) to difficult to evaluate (high in credence properties). Most of the ten determinants, except tangibles and credibility, can only be known as the customer is purchasing or consuming the service. Parasuraman et al. (1985) argue that two of the determinants fall into the category of credence properties, those which consumers cannot evaluate even after purchase and consumption. These include competence and security and customers are never certain of these attributes, even after consumption of the service. On the basis of these dimensions it has been shown how consumers organize information about service quality.

2.6.1 SERVQUAL- the model & critique

Measures of service quality have been developed during the years by many different researchers. One of the most popular and general scales is SERVQUAL, other created to measure specifically service quality in retail companies is RSQS (Retail Service Quality Scale). RSQS model was introduced in 1996 by Dabholkar et al. and consists of 28 questions: 17 of which come from SERVQUAL and has five dimensions: physical aspects, reliability, personal interaction, problem solving and policy (Dabholkar, 1996).
Some researchers (Eysteinsson & Bjornsdottir, 2011; Bhaskar & Shekhar, 2011; Gaur & Agrawal, 2006) argue that because RSQS has been designed in the United States it can therefore be difficult to capture all the dimensions when doing service quality research in retail companies in countries where the culture is different from the United States. Another model, SERVQUAL is one of the most popular instruments designed to measure both expectations and perceptions of service quality at the same time is the one introduced by Parasuraman et al. in 1986. SERVQUAL is a 22-item scale introduced by Parasuraman et al. in 1985 which examines the gap between customers’ expectations of a service quality and their perceptions of the service received (Parasuraman et al., 1988). Respondents are asked to provide the level of service expected from a service firm on a set of 22 expectations items. Agreement with each item is assessed using a seven-point scale from strongly agree to strongly disagree, without providing any verbal descriptions (Brown et al., 1993). Afterwards respondents provide their evaluations of the actual level of service provided by a specific firm on a corresponding set of 22 perceptions items. Customers’ perceptions of service performance are met or exceed if the quality of the service is good.

Despite the fact that the SERVQUAL has been used commonly for different studies, many researchers criticised the scale for a number of different reasons. According to Carman (1990) the method is not generic and it needs to be customised to the service in question in spite of the fact it was originally designed to provide a generic measure that could be applied to any service. This can be done by adding items or changing the wording of items. Carman’s (1990) and Vázques et al. (2001) find SERVQUAL measurement model not suited to measure service quality in neither discount stores nor specialty stores selling clothes because it concentrates only on service quality, and therefore the customer satisfaction with products cannot be assessed.
The length of the survey is very often criticised as well (Gagliano and Hathcote, 1994). Finn and Lamb’s (1991) argue that retailers and consumer researchers should not treat SERVQUAL as an ‘of the shelf’ measure of perceived service quality. They are of the opinion that much more details and subtleties are needed for specific companies and industries.

The services of retail companies are different from the services of other companies because they sell both services and goods (Finn and Lamb, 1991). The customer experiences differ as well. Because customers have to move along the store, find the goods to buy interact with the staff, not always the same individuals, and sometimes return goods they will perceive the service received in different way (Eysteinsson and Bjornsdottir, 2011).

Parasuraman et al. (1988) modified later the SERVQUAL and ten dimensions have been consolidated into five domains of service quality: reliability, responsiveness, assurance, empathy, tangibles recognized as RATER (Burns 2003, p.4). These were reported the most important dimensions of any service organization (Parasuraman et al., 1988). Finn & Lam (1991), in a study of retailing, concluded that their results did not support the belief that the RATER instrument could be used to assess quality in a wide range of service firms. They found that the model’s five determinants of service quality were insufficient to cover quality in a retailing setting.

ZARA is the Spanish retailer and because there was not enough research conducted to examine the Retail Service Quality Scale (RSQS) applicability to European retail and Irish market, and taking into account the time constraint to this research it is preferable to concentrate on the scale that was found valid across different industries—SERVQUAL.
Therefore, in order to conduct this study and evaluate customer satisfaction with service quality the initial framework of Parasuraman et al. (1985) will be used with the exception of competence and access determinants. The researcher was concerned that it would be difficult for the respondent to answer the questions relating to competences namely the possession of the required skills and knowledge to perform the service. Similarly, access determinant has been excluded from this research as the researcher felt that the questions were included while evaluating responsiveness determinant.

2.7 Product Quality

In the PDMA Handbook of New Product Development, the glossary contains the following definition for product: *A term used to describe all goods, services, and knowledge sold.*

A product is not always just a single product; there is usually a hierarchy of products and services within a firm. A product may be a part of other products or products lines, packaged with a group of products, or included in a product portfolio (Haines, 2009 p.3).

2.7.1 Dimensions of product quality

Garvin (1984, 1987) proposed eight critical dimensions or categories that be identified as a framework for thinking about the basic elements of product quality: performance, features, reliability, conformance, durability, serviceability, aesthetics, and perceived quality (Figure 2.3).
Each of these dimensions is self-contained and distinct, for a product can be ranked high on one dimension while being low on another; also an improvement in one may be achieved only at the expense of another (Garvin, 1987). Garvin (1984) suggested that by influencing or varying any one or more of these eight dimensions of quality, a company can position itself in the market place, so quality is then a strategic variable. However, it is important to pursue only those dimensions of quality that are unimportant to consumers (Mehta, 1998).

Figure 2.3 Eight Dimensions of Product Quality

Despite the existence of many researches that were measuring how consumers evaluate clothing, quality continues to be an elusive question. Hines et al. (2001) noted that previous clothing studies suggested that consumers use a variety of informational cues to judge clothing quality including concrete characteristics of the product such as fibre content and price (intrinsic and extrinsic cues).
Abstract features that are ascribed to the product by the user such as beauty and durability (aesthetic and performance cues) seem to be equally important. These studies however have been inconsistent, suggesting there are underlying factors that influence why some consumers find some informational cues salient when evaluating quality while other consumers do not. Determining these factors for evaluating clothing quality is essential to better understand consumers’ perception of quality. Therefore, for the purpose of this research, quality dimensions applicable to the clothing industry will be evaluated.

1. Performance

Performance refers to a product’s primary operating characteristics and combines elements of both the product and user-based approaches. Because this dimension of quality involves measurable attributes, brands can usually be ranked objectively on individual aspects of performance (Garvin 1984, 1987).

The connection between performance and quality is more ambiguous, and whether performance differences are perceived as quality differences depends on individual preferences. Consumers have a wide range of interests and needs, and each of them is likely to equate quality with high performance in his or her area of immediate interest (Garvin, 1984).

For clothing items, performance would mean shrinkage in laundering or dry cleaning, colourfastness, abrasion resistance, strength, etc. (Mehta et al., 1998).

Consumers organize information at various levels of abstractions ranging from simple product attributes to complex personal values. When it comes to performance, dimensions the product has to fulfil functional and practical benefits of the customer (Zeithaml, 1988).
2. Features

Features are the ‘‘bells and whistles’’ of product, those characteristics that are part of the physical product, and supplement their basic functioning.

These cannot be changed without also changing the physical product itself. The line separating primary performance characteristics from secondary features is often difficult to draw (Garvin, 1987). Features, like product performance, involve objective and measurable attributes; their translation into quality differences is equally affected by individual preferences (Garvin, 1984).

Mehta et al. (1998) argue that for clothing items, features will include some functional fabric finishes, such as, durable press, stain/soil release, and odor resistance.

3. Reliability

Reliability is the third dimension of quality which reflects the probability of a product malfunctioning or failing within specific period of time (Garvin, 1987). Garvin (1984, 1987) argues that among the most common measures of reliability are the mean time to first failure, the mean time between failures, and the failure rate per unit time. He continues that because these measures require product to be in use for as specific period, they are more relevant to durable goods than to products and services that are consumed instantly.

In the case of clothing, reliability is equally important for short and long term use. This dimension of quality would mean how well an item would withstand effects of daily wear and refurbishing (Mehta, 1998). Whenever clothes are made for one use only, it is all the more probable that the occasion is extremely important, such as a wedding (Koskennurmi-Sivonen et al., 2009).
4. Conformance

Conformance is a related dimension of quality and the degree to which a product’s design and operating characteristics meet established standards. This dimension owes the most to the traditional approaches to quality pioneered by experts like Juran (Garvin, 1977). As per Garvin (1984) within the factory, conformance is commonly measured by the incidence of defects: the proportion of all units that fail to meet specifications, and so require rework or repair. In the field, data on conformance are difficult to obtain, and proxies are frequently used.

Conformance is also akin to reliability but in a different sense. It refers to the degree to which a product’s design and operating characteristics meet pre-established standards and industry specifications. Dispersion within certain limits is ignored (Garvin, 1988). Reliability and conformance are closely tied to the manufacturing-based approach to quality.

For clothing items, conformance can mean how well an item meets design specifications such as sizing and construction features (Mehta, 1998). Koskennurmi-Sivonen et al. (2009) discuss that in small dressmaking businesses, standards can be understood only metaphorically, yet conformance may be expected when products are compared to other clothes from the same maker and to reputation, which is a promise of quality.

5. Durability

Garvin (1988) contends that durability is very similar to reliability but is not quite the same. Durability, a measure of product life, has both economic and technical dimensions. Technically, durability can be defined as the amount of use one gets from a product before it deteriorates (Garvin, 1984).
When it comes to clothing items durability would mean how long a clothing item lasts before it must be discarded (Mehta, 1998). Moreover, in terms of durability, it would be appropriate to consider at least technical (material and structural) and stylistic durability (Koskennurmi-Sivonen et al., 2009).

Garvin (1984) argues that durability is much easier to interpret when repair is impossible, and becomes difficult when repair is likely. Then the concept takes on an added dimension, for product life will vary with changing economic conditions. Durability becomes the amount of use one gets from a product before it breaks down and replacement is regarded as preferable to continued repair (Garvin, 1987).

6. Serviceability

Serviceability, or the speed, courtesy, competence, and ease of repair, is a sixth dimension of quality. Garvin (1984, 1987) argues that the consumers are concerned not only about a product breaking down but also about the time before service is restored, the nature of dealings with service personnel, and the frequency with which service calls or repairs fail to correct outstanding problems. According to Garvin (1984) while some of these variables reflect differing personal standards of what constitutes acceptable, others can be measured quite objectively. Responsiveness is measured by the mean time to repair, while technical competence is reflected in the incidence of multiple service calls required to correct a single problem (Garvin, 1984).

Mehta (1998) thinks that serviceability has a slightly different meaning for clothing items. Serviceability of a clothing item generally means how well a clothing item will perform in daily wear and refurbishing. Clothing is often made of delicate materials, service demands special attention.
There should be a special attention placed to clothes care labels and guarantees.

7. Aesthetics

According to Garvin (1984, 1988) the last two dimensions of quality are the most subjective and are closely related to the user-based approach to quality. Aesthetics—how a product looks, feels, sounds, tastes, or smells—is a matter of personal judgement and a reflection of individual preference. Nevertheless, there appear to be some patterns in consumers’ rankings of products on the basis of taste (Garvin, 1987).

For clothing items, aesthetics means how well a clothing item looks or how attractive it appears, which would be influenced by drape, size of the garment or how well it fits the wearer (Mehta, 1998). Koskennurmi-Sivonen et al. (2009) are confident that aesthetics is not always, and sometimes not even primarily, a matter of the user. A maker may be highly ambitious regarding aesthetics and a client may seek her/his way to a certain maker just because of his/her trustworthy aesthetic judgment. The companies have to realize that it is impossible to please everyone.

8. Perceived Quality

Perceptions of quality can be as subjective as assessments of aesthetics. Some of these quality characteristics are inherent, while others are ascribed to the products.

As some real quality characteristics are difficult or impossible to observe directly, other cues become important for drawing inferences about quality (Koskennurmi-Sivonen et al., 2009). In these circumstances, products will be evaluated less on their objective characteristics than on their images, advertising, or brand names (Garvin, 1984).

Recently, market research has found that a product’s country of manufacture is viewed by many consumers as an indication of its quality (Mehta, 1998).
Reputation is the primary and powerful stuff of perceived quality. The customers believe that the quality of products today is similar to the quality of products yesterday. Mehta (1998) debates, that when it comes to clothing, generally speaking, clothing made in Italy, Germany, or Japan is perceived to be higher or better quality clothing than that made in some of the Asian countries.

2.7.2 Relationship between product quality and customers satisfaction

As per Tsiotsou (2005) perceived product quality is one of the most important construct in the marketing. Marketing managers are interested in consumer purchase intentions in order to forecast sale of existing and/or new products and services (Tsiotsou, 2005). Purchase intentions data can assist managers in their decisions related to product demand (new and existing products), market segmentation and promotional strategies (Tsiotsou, 2006).

Bitner and Zeithaml (2003) argue that satisfaction is the customers’ evaluation of a product or service in terms of whether that product or service has met their needs and expectations. Moreover, some scholars have found a direct relationship between perceived quality and purchase intentions (Carman, 1990; Parasuraman et al., 1996). Perceived product quality seems to play an important role in both consumer satisfaction and purchase intentions (Tsiotsou, 2006). External cues like: price, brand name and objective quality information have been found to be related to perceived product quality and consumers’ product evaluations (Rao and Monroe, 1989; Dodds, 2002) and can be used to enhance consumers’ product quality. Perceived product quality could be used by marketers as a segmentation criterion in order to identify homogeneous groups of consumers, and could assist managers in positioning their products in the consumers’ perceptional map (Tsiotsou, 2005).
Managers have to understand the role of involvement, perceived product quality and satisfaction in order to be able to predict purchase intentions and consequently purchase behaviour.

According to Shaharudin et al. (2010), product quality helps the firm to deliver goods that can fulfil the needs and wants of the customer. It will also guarantee for a continuous demand if the value of the product exceed the expectation and satisfaction of the customer. Didier (2003) thinks that quality denotes a product’s ability to satisfy a customer’s requirements. On this wise, this definition focuses entirely on the customer and how the customer thinks a product will fit that purpose. Product quality is one of the marketer’s major positioning tools. Quality has a direct impact on product or service performance; thus it is closely linked to customer value and satisfaction. Quality can be defined in terms of creating customer value and satisfaction (Armstrong et al., 2010 p.142).
2.8 What determines satisfaction? How needs shape customer behaviour?

Zeithaml et al. (2009) argue that customer satisfaction is influenced by specific product or service features, perceptions of product and service quality, as well as price. In addition to product and service features and one’s own individual feelings and beliefs, consumer satisfaction is often influenced by other people (i.e. satisfaction can be influenced by the reactions and emotions of individual family members).

Modi et al. (2012) thinks that not only the demographic characters and the economic circumstances of the individual need to be taken into account, but also the more powerful influences of prejudices, feelings, attitudes, opinions and beliefs.

Several internal and external factors affecting individuals in their daily lives also influence their purchase activities (Modi et al., 2012).

The universal model of hierarchy of needs formulated by Abraham Maslow identifies five basic levels of human needs (psychological, safety and security, social, ego self-actualization needs), which rank in order of importance from lower- level (biogenic) needs to higher level (psychogenic) needs (Schiffman et al., 2010). The theory postulates that individuals seek to satisfy lower-level needs before higher-level needs emerge. The need hierarchy has received wide acceptance in many social disciplines, especially in evaluating consumers purchase behaviour. According to Schiffman et al. (2010) the major problem with this theory however, is that it cannot be tested empirically as it is almost impossible to measure precisely how satisfied one level of need must be before the next higher need becomes operative. Despite this, the hierarchy offers a highly useful framework for marketers trying to develop appropriate advertising appeals for their products.
Modi et al. (2012) argue that consumers are heterogeneous in nature and they are all different from each other in certain respects. Moreover, they often act emotionally rather than rationally. The marketer makes decisions that will tie in more closely with consumer needs and desires, by understanding how the consumer behaves but also the way he behaves.

2.9 Chapter Summary

This research intends to measure customer satisfaction with service quality and product quality delivered by apparel retailer ZARA in the context of Irish clothing retailing industry. Customer satisfaction is described as the individual consumer’s perception of the performance of the product or service in relation to his or her expectations and the (Schiffman & Kanuk, 2010; Armstrong & Kotler, 2010) and customer’s fulfilment response (Oliver, 2010). The three research objectives have been constructed for this research, and these were fully reviewed with help of the academic theories. This study combines multiple measures to assess and analyse customer satisfaction: determinants of both service and product quality, theoretical frameworks (Taylor & Baker, 1994; Rust & Oliver, 1994; Hokanson, 1995) with the special emphasis on the model of the choice for this study introduced by Zeithaml et al. (2009). Among different service quality scales SERVQUAL model (Parasuraman et al., 1985) was adopted to analyse customer satisfaction with the service at ZARA. This scale has been used because of its versatility as the scale has been tested in a number of studies conducted in various service settings, geographical locations and different cultural context. Another model, Garvin’s Eight Dimensions of Product Quality was reviewed to measure customer satisfaction with product quality.
3. Methodology

3.1 Introduction

The methodology chapter begins with presentation of the research questions and the creation of conceptual model for this research. Then research strategy with its different approaches is briefly discussed. Continuing with presenting empirical data analysis and method used to review this data.

3.2 Research Questions

One of the many challenges retailing clothing industry is facing in today’s competitive environment is demand to provide quality service and products. Jones and Hill (2010)suggest that only if a company has a sustained competitive advantage, it is likely to gain market share from its rivals and thus grow its profits more rapidly than those of rivals.

The purpose of this research is to explore the bond between service and product quality resulting from it customer’s satisfaction. Nevertheless there was no focus put on its relationship with loyalty. This research concentrates on quality of service and product, focusing on the aspects that either diminish the feeling of satisfaction with the company or contribute to improvement of such satisfaction. By measuring the quality of both service and product quality it will be possible to outline the dimensions which need improvements. This will provide the management with the valuable information of how to train and allocate their resources and producers of which dimensions of the product quality need to be ameliorated.
Because the respondents were also asked to assess their overall satisfaction and their intention to shop again with ZARA the last research question is constructed. This study has exploratory nature and therefore, the research hypotheses are formulated as specific research objectives.

The study will analyse the following investigation research question:

The extent to which the quality of service and product are influencing customers’ satisfaction in the clothing retailing industry in Ireland

Based on the literature reviewed, the following are the specific objectives of this study:

1. To apply, rank and describe the impact of SERVQUAL factors on customer satisfaction in ZARA Ireland.
2. To apply, rank and describe the quality dimensions of ZARA products in Ireland and their impact on customer satisfaction using Garvin eight dimensions of Product Quality.
3. To measure and describe the overall customer satisfaction with ZARA services and products in Ireland.

1. **To apply, rank and describe the impact of SERVQUAL factors on customer satisfaction in ZARA Ireland.**

Traditionally, service quality has been conceptualized as the difference between customer expectations regarding a service to be received and perceptions of the service being received (Grönroos, 2001; Parasuraman, Zeithaml, and Berry, 1988 in Akbar and Parvez, 2009). Service quality has been also referred as the extent to which a service meets customers’ needs or expectations (Lewis and Mitchell, 1990). Customer service is the most powerful stimulant of brand loyalty.
This research objective is aiming to apply, rank and describe factors of SERVQUAL that affect the customer satisfaction and to which extent. The level of importance of SERVQUAL dimensions towards customer satisfaction will be tested and the following dimensions will be tested: reliability, responsiveness, courtesy, communication, credibility, security, understanding/knowing the customer, tangibles.

The level of importance of eight dimensions of service quality towards customer satisfaction will be tested as follow:

ZARA service performance (reliability, responsiveness, courtesy, communication, credibility, security, and understanding) over a specific period of time is positively related to the level of satisfaction toward the quality of ZARA services.

ZARA tangibles elements (i.e. stores atmosphere and décor) are positively related to the level of satisfaction toward the quality of ZARA services.

These eight dimensions of service quality will be measured using several questions to which respondents will be asked to rate their satisfaction on a five-point Likert scale: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree. Their numerical values will range from one (1) Strongly Disagree to five (5) Strongly Agree.

The Likert scale seems to be the most relevant since the research intends to explore customers’ attitudes towards retailer. Seale (2009) lists several key advantages of the Likert scales. They perform very well when it comes to a reliable, rough ordering of people with regard to a particular attitude; apart from their relative ease of construction, the scales are also provide more precise information about the respondent's degree of respondent agreement or disagreement. Additionally, it becomes possible to include items whose manifest content is not obviously related to the attitude in question, so that the subtler and deeper ramifications of an attitude can be explored.
The five-point Likert scale has been applied as the use of seven-point scales has been criticized on several grounds. Lewis (1993) has criticized the use of seven-point Likert scale for its lack of verbal labelling for points two to six. She believes this may cause respondents to overuse extreme ends of the scale. Mangold and Babakus (1991) opted to use five-point Likert scales on the grounds that it would reduce the ‘frustration level’ of respondents and increase response rate and response quality.

One sample T-test will be used to test the significance of the means at a 0.05 significance level to evaluate service quality dimensions that are of main importance to customers of ZARA. Then the dimensions will be ranked in order of magnitude to indicate the importance of the dimensions to ZARA customers.

2. To apply, rank and describe the quality dimensions of ZARA products in Ireland and their impact on customer satisfaction using Garvin eight dimensions of Product Quality.

Product quality is the only variable that has significant effect on the overall customer satisfaction (Garvin, 1984). As already mentioned in the literature review Chapter, with the higher quality of the goods customer satisfaction with services increases and in turn with low quality of the products evaluation of the service in customer’s eyes will be influenced negatively (Tsiotsou, 2005).

Therefore quality improvement has become the important tool in differentiating the products and services in the competitive market.

Jones and Hill (2010) argue that in order to gain a competitive positioning the firm must stress product innovation and quality- as- excellence.
This quality concept is defined by the author as a perspective that relates to product’s design and styling, its aesthetic appeal, its functions and features and the level of service associated with the delivery of the product. Nevertheless quality that bases on reliability is another perspective.

This research objective intends to apply product attributes and evaluate the ones with the most impact on assessing the overall quality by the customers. In addition, this research aims to test Garvin product quality and to which extent these have an impact on customer satisfaction with ZARA products.

The level of importance of eight dimensions of product quality towards customer satisfaction will be tested as follow:

The Performance - Primary operating characteristic of ZARA products is positively related to the level of satisfaction towards the quality of product.

The Features - Secondary characteristic of a product is positively related to the level of satisfaction towards the quality of ZARA products.

The Reliability - ZARA failure-free product over a specific period of time is positively related to the level of satisfaction towards the quality of ZARA products.

The Conformance - Degree to products physical and performance characteristics meet design specification is positively related to the level of satisfaction towards the quality of ZARA products.

The Durability - Measure of useful product life, before it deteriorates or must be replaced is positively related to the level of satisfaction towards the quality of ZARA products.

The Serviceability - courtesy and competence, possibility to exchange the product is positively related to the level of satisfaction towards the quality of ZARA products.

The Aesthetics - Products look and feels are positively related to the level of satisfaction towards the quality of ZARA products.

The Perceived quality & credibility - on image, brand name, and advertising is positively related to the level of satisfaction towards the quality of ZARA products.
One sample T-test will be used to test the significance of the means at a 0.05 significance level to evaluate product quality dimensions that are of main importance to customers of ZARA. Then these dimensions will be ranked in order of magnitude to indicate the importance of the product dimensions to ZARA customers.

3. To measure and describe the overall customer satisfaction with ZARA services and products in Ireland.

As discussed in the literature review section, customer satisfaction is a critical attribute to be taken into account since it determines whether the customer is just satisfied or may even become the apostle of the brand (Heskett et al., 1997).

According to Hanif, Hafeez and Riaz (2010) customer satisfaction is largely important because that would create sense of belongingness, emotional binding and brand loyalty among customers.

Evaluating overall customer satisfaction with both service and product quality dimensions is one of the objectives of this research. The last part of the questionnaire developed for this study contains two questions that aiming to assess the overall satisfaction with ZARA garments and services.

Respondents will be asked to respond to questions on the questionnaire that ask:

1. Overall, you are very much satisfied with shopping in ZARA?

2. You are very much likely to shop in ZARA in the next months.

A five-point Likert-scale response will be given, coded from one (1) strongly disagree to five (5) strongly agree.
Figure 3.1 The conceptual model based on the research objectives of this study

3.3 Structure of research methods

Zeithmal et al. (2013) explains that research is only the first step in understanding the customer, therefore the research needs to be appropriately designed, executed, and presented. Academics disagree about the name, the order and the nature of research stages.

Probably the most widespread framework for research methods of business scientists has been developed by Saunders et al. in 1997 in the first edition of their book.
Saunders et al. (2009) argue that there are relevant layers within each research procedure, thus classified research into six stages and labelled the model which presented them as ‘the research onion’ (Figure 3.2). The onion is a metaphor for describing the layers of the research process. The outer layers of the onion contain thinking about research philosophies and approaches, the central layers consider research strategies and choices, while at the centre of the onion data collection methods and analysis are the main importance (Saunders et al. 2009).

Figure 3.2 illustrates the research onion adapted to requirements of this thesis. The name of the layer is highlighted in bold and underneath the approach used in this research is given.

Figure 3.2 Structure of research methods

![Figure 3.2 Structure of research methods](image)

Source: Adapted from Saunders et al. (2009)
3.3.1 Research Philosophy

Crossan (2003) argues that understanding the research philosophy has an essential role in the choice of research methodology. Most importantly, it can help the researcher to refine and specify the research methods to be used in a study, that is, to outline the overall research strategy. Moreover, it enables to define the limitations of the particular research approach and helps the researcher to be creative and innovative in the choice of methods to approach the research.

The research philosophy adopted contains important assumptions about the way in which the researcher view the world around. As per Saunders et al. (2012) this research philosophy reflects the principles of positivism, and having said that the researcher intends to adopt the philosophical stance of the ‘natural scientist’. It is preferable to ‘work with an observable social reality and that the end product of such research can be law-like generalisations similar to those produced by the physical and natural scientists’ (Remenyi et al., 1998:32). The academic literature is rich in different definitions of the term ‘positivism’. Jankowicz (2005) argues that positivism comprises several beliefs about how the researcher can make sense to others, which have come into existence because it is assumed that no-one is perfect and that all human beings are fallible. The basic reasoning of positivism assumes that an objective reality exists which is independent of human behaviour and is therefore not a creation of the human mind. All real knowledge should be derived from human observation of objective reality. The senses are used to accumulate objective and measurable data, anything else should be rejected (Crossan, 2003).
3.3.2 Research Approach

There are several strategies to approach research whereas Saunders et al. (2012) present two approaches, inductive (qualitative) and deductive (quantitative) methods. The main difference between the two methods concerns the use of numbers and statistics (Blumberg, 2008). Lancaster (2012) argues that both methods of data collection and methods of data analysis would in part be determined by whether or not the researcher was interested in qualitative or quantitative data. One method is not better than the other, and the distinction between the two major categories of data is particularly important when it comes to the data collection and analysis steps of the research.

Induction suggests a ‘bottom up’ approach to theory development, and moves from specific observations to broader generalisations and theories (Saunders et al. 2012). A deductive approach is the opposite, has a ‘top down’ flavour and involves the testing of a theoretical proposition by using a research strategy designed to perform this test (Saunders et al., 2012). Lancaster (2012) argues that it is essentially a set of techniques for applying theories in the real world in order to test and assess their validity.

In deductive approach the researcher defines research questions, develops hypotheses and by using existing theory, designs a research strategy to test and confirm these hypotheses. This will lead to the further development of theory which may then be tested by further research (Saunders et al., 2009).

Figure 3.3 Deductive Approach

![Deductive Approach Diagram](image)

Source: Adopted from Saunders and Lewis (2012).
This research involves a deductive reasoning process which represents the main, and some would say the only justifiable, method of research in the natural sciences. Lancaster (2012) suggests that some, in addition, thinks that this is the only truly ‘scientific’ approach to developing knowledge and therefore should be the only approach that is used in the social sciences. Both methods have also its weak sides. Cronbach (1975) pointed out, quantitative as opposed to qualitative is not a dichotomy, and the researcher may often combine both quantitative and qualitative analysis of the same data so as to develop a richer understanding of a phenomenon or issue through the data collected, while at the same time being able to use a combination of techniques to check data for aspects such as representativeness, reliability and validity.

Due to time constraint and the general difficulty in measuring the phenomenon of customer satisfaction a method where information can be measured and valued numerically is recognised as the safest approach, thus a deductive approach will be conducted.

By applying this research approach it is aimed to relate the existing theory and data obtained from a study. This study can be categorized as ‘exploratory’ and tends to increase understanding of the given topic. The researcher intends to assess customer satisfaction derived from both service and product quality provided by ZARA. The social phenomena are service and product quality and customer satisfaction that will be approached from the customers’ perspective.

There are several forms of data collection associated with deductive research paradigm, one of them- survey will be used for the purpose of this study.
3.3.3 Research Strategy

Many studies (Parasuraman et al. 1985, Heskett et al. 1997, and many more) found that there is a strong, positive correlation between customer satisfaction and their buying behaviour.

This correlation is not completely reliable though; higher satisfaction levels may not necessarily result in more sales and higher margins. For instance Griffin (1995) found that, even when people claim to be satisfied in customer satisfaction surveys as high as 85 per cent of them would still be willing to change the supplier. This is the result of the difficulty in general to accurately and reliably define and measure customer satisfaction. Since customers tend to overrate their satisfaction in the surveys they fill in, the reliability of satisfaction surveys as predictors of repeat purchase can be questioned.

In several ways the satisfaction ratings can be inflated: the formation of questions, timing of the measurement, and even the mood of the respondents (Jankowicz, 2005). Nevertheless, surveys are the most common tool when investigating this phenomenon therefore it would be preferable to follow the previous research methods. The survey is conducted in order to establish people’s views of what they think, believe, value or feel, in order to discover these views for their own sake or to support an argument to generalize conclusions more widely. Saunders et al. (2012) argue that one of the reasons surveys are so popular is that they allow the collection of data about the same things from a large number of people in a cost-effective manner. Blumberg et al. (2008) think that a major limitation of self-administered surveys concerns the type and amount of information that can be secured. Participants will generally refuse to cooperate with a long questionnaire unless they perceive a personal benefit. Another major weakness of this kind of study is non-response rate. Generally, better-educated participants and those interested in the topic answer mail surveys (Blumberg et al., 2008).
Measuring the quality of a service can be a very difficult exercise. Unlike the quality of product where there are specific specifications such as length, depth, weight, and colour etc. a service can have numerous intangible or qualitative specifications.

In addition there is an expectation of the customer with regards to the service, which can vary considerably based on a range of factors such as prior experience, personal needs and what other people may have told them (Zeithaml, 2009). By applying the questionnaire as the instrument for data collection any interaction will be limited to physical distribution and this ensures that the researcher and the respondents will not influence each other.

Questionnaire Design

As per framework for this research the researcher intends to concentrate on two independent variables: service quality and product quality and one dependent variable satisfaction.

The questionnaire consists of four parts.

- **Part 1 Personal and Customer Information**- this part of the questionnaire aims to collect demographic information, and ask specifically about the gender, nationality and age group.

- **Part 2 Customer Satisfaction with ZARA services**- this part of the questionnaire consists eight sections that were adopted from SERVQUAL model. Each section intends to measure the impact of service quality determinants on customer satisfaction.

- **Part 3 Customer Satisfaction with ZARA products**- this part of questionnaire consists eight sections that were adopted from Garvin Eight Dimensions of Quality (1984) to measure the impact of product quality on customer satisfaction.
- Part 4 Overall Customer Satisfaction- this part estimates the overall level of customer satisfaction with both product and service quality and the customer’s intention to shop in ZARA again in the coming months.

All questions included in the survey are close-ended and the respondent was asked to choose one option only.

3.3.4 Research choice

Taking into account the scope of this research, a mono method research is considered the most appropriate. By choosing a mono method the researcher was intending to adopt a single quantitative data collection technique- questionnaire.

3.3.5 Time Horizons

Saunders and Lewis (2012) suggest two types of time horizons cross sectional and longitudinal studies. While longitudinal study is the study of a particular topic over an extended period of time, cross sectional is time-constrained and is a ‘snapshot’ of a particular research setting at a particular time (Saunders et al., 2012). This case study will be based on quantitative data collected through cross-sectional surveys. The main weakness of this type of research is that the survey is completed by a single respondent at a single point in time.

To ensure the reliability and validity of this research the researcher was seeking to acquire various people (in term of gender, age, occupation, and nationality), as well as will slightly stretched the time of research.
The e-mails with link to surveys were distributed on the 3rd of July 2013 and the respondents were asked to complete them by the 20th of July 2013.

3.3.6 Sample

The target population for this study comprises all ZARA customers that live in Ireland. Out of all ZARA customers in Ireland, a sample size of one hundred (100) was selected for this research. Using a larger sample in this survey would probably require more time, and the time limit within which the research was to be completed would not permit the use of larger sample size.

Sampling makes it possible to generate findings that are representative of the whole population at a lower cost than collecting the data for the whole population. Therefore it was possible to set a finite time span for this project which assisting in planning and delivering end results.

The questionnaires were distributed using the snowball sampling method (Blumberg et al. 2008), sending the link through e-mail among friends and co-workers (approximately 25-30 strong contacts) and by asking them to forward the link to any of their friends/family member that are customers of ZARA. To draw a higher response rate it has been decided to send the link to the questionnaire to as many contact as possible using not only the e-mail but also social platforms like Facebook and Twitter.

The snowball method seems to be most suitable for this type of research since it helps to save time and make it possible for surveys to be distributed among people who are not necessary known by the authors therefore the findings are a subject of a huge curiosity of the author.
In order to avoid confusions and collect fully completed questionnaires a short explanation of the content of the questionnaire was included (Appendix D). Additionally, one of the very first questions was asking the respondent not to continue with the questionnaire if he/she is not a ZARA customer. By verifying this information straight from the beginning the researcher tried to verify the respondents and to ensure that the respondent is familiar with the scope of the research (questionnaire available in Appendix E).

3.3.7 Techniques (Data Analysis)

Data Analysis phase is composed of few parts. The four steps were taken in order to analyze the data obtained through questionnaires. Statistical terms that were used for this analysis are available in Appendix G- Glossary of Statistical Concepts.

3.3.7.1 Descriptive statistics

The first step of the data analysis has shown item statistics that are conducted separately for service and product variables. Mean values were calculated for both sets of data, as well as overall customer satisfaction.

3.3.7.2 Reliability data analysis

The reliability of a measure refers to its consistency and is used to validate a questionnaire to check the reliability of the scale (Field, 2005).
According to Bryman & Cramer (2009) this notion is often taken to entail two separate aspects: external and internal reliability. Field (2005) argues that there are number of procedures for estimating internal reliability; two of them can be easily computed in SPSS:

- **Split-half reliability** is probably the simplest way to measure internal reliability in practice. This method divides the items in a scale into two groups and the relationship between respondents’ scores for the two halves is computed. A correlation coefficient is then granted, which varies between 0 and 1 and the nearer the result is to 1-and preferably at or over 0.8 –the more internally reliable the scale is (Bryman et al., 2009).

- Cronbach’s alpha (α) is the second method and was created by Cronbach with the idea of overcoming the above issue. In 1951 Cronbach came up with a measure that is loosely equivalent to splitting data in two, and in every possible way to compute the correlation coefficient for each split. The average of these values is equivalent to Cronbach’s alpha (α)- the most common measure of scale reliability (Field, 2005).

Two separate scales have been used as frames to build the questionnaire for this research; for service and product quality, and they both were checked to confirm the reliability and validity of the scales. The Cronbach’s alpha values inter-item correlation as well as items total correlation.
3.3.7.3 Factor Analysis

Factor analysis is a technique for identifying groups or cluster of variables and according to Field (2005) this technique has three main uses:

1. to understand the structure of a set of variables;
2. to construct a questionnaire to measure an underlying variable;
3. to reduce a data set to a more manageable size while retaining as much of the original information as possible.

This technique can be seen as a tool to bring order to the way we see things by determining which of them are related and which of them are not. Bryman et al. (2009) distinguish two uses of factor analysis: exploratory and confirmatory perspectives. The most commonly reported according to authors is the exploratory kind in which the relationships between variables are examined without determining the extent to which the results fit a particular model. This structure is recommended when no hypothesis about the nature of the underlying factor structure of their measure was created. In this study, an exploratory factor analysis was used as the aim of the research was to explore the dimensions of both product and service quality in the clothing retailing industry.

For the purpose of this research with help of Varimax (orthogonal) rotation with Kaiser Normalization the number of factors, separately for service and product quality will be extracted, and then grouped into new loads. Variables with the values less than 0.5 will be neglected.
3.3.7.4 Regression Analysis

Regression has become one of the most commonly used techniques in the analysis of data in the social sciences. It is a powerful tool for summarizing the nature of the relationship between variables and for making predictions of likely values of the dependent variable (Bryman et al., 2009).

Field (2005) postulates that by producing a line which fits the data closely (line of best fit), the regression summarize the relationship between two variables.

A good strategy to adopt with regression is to measure predictor variables for which there are sound theoretical reasons for expecting them to predict the outcome.

The regression analysis is the last step that helped the researcher to identify the best predictors of both service and product quality. The analysis has commenced with analysing the ANOVA table. Then the strength of the relationship between the both models and the dependent variable will be analysed using multiple correlation coefficient. The analysis will be summarized with analysing factors standardized coefficients and significance to determine the predictors of service and product quality in the Irish clothing retailing industry.

3.4 Ethics

According to Blumberg et al. (2008) ethics is the study of the right behaviour and addresses the question of how to conduct research in a moral and responsible way. He continues by saying that ethics are moral principles, norms, or standards of behaviours that guide moral choices about our behaviour and our relationships with others.

The questionnaires were anonymous, and no name/ surname were required in order to participate in the survey, moreover the participants were guaranteed confidentiality.
Confidentiality is an important condition, and being aware of that all feedback received is kept secure.

3.5 Researcher Bias

There is two main factors that can cause bias in any type of interviewing. One of them is non-response which is a concern for all types of surveys. Some studies show that first calls or distributions often secure less than 20 per cent of the designated participants. The second factor is response error, which occurs when the participant fails to give a correct or complete answer (Blumberg et al. 2008). The interviewer can provide a solution for both types of errors.

All the questionnaires with the missing responses were excluded, and only fully completed surveys were taken into consideration. The researcher bias can be easily reduced by means of a careful design of the survey questions itself (Jankowicz, 2005). The researcher put every effort to create clear and precise questions. The survey questions were written so each respondent had a chance to interpret the meaning exactly the same way. To avoid further confusion there were only closed type of questions with the choice of answers from strongly agree to strongly disagree. By using the SERVQUAL as the framework for the questionnaire the researcher intends to minimise the impact of their own bias while creating the forms.
4. Data Analysis

4.1 Introduction

This Chapter presents results from the analysis conducted on the data collected through quantitative survey. At first the demographics of ZARA customers are reviewed. These includes: gender, age, nationality, duration of residence, customer duration and last visit in the store. Then the descriptive statistics and reliability for ZARA services and garments are analysed. Discussion of Factor Analysis and the linear regression follow subsequently. The chapter is completed with the presentation of new determinants of service and garments quality and evaluation of overall customer satisfaction with ZARA.

4.2 Demographic Profile

Since the characteristics of the respondents have a significant impact on questionnaire results, the descriptive data of participants of this study will be presented. The majority of participants are found to be female with 69 per cent and 31 per cent are male. The ratio of male-female population sample of this study is slightly different from the proportion provided by the Central Statistics Office (CSO, 2011) in which females’ represent 50, 47 per cent of the population and males the remaining 49, 43 per cent. Questionnaires flow was controlled by the researcher on a daily basis as the aim for this research was to obtain a hundred fully completed questionnaires. Among 108 questionnaires a hundred was completed from the first to the last question and only these were included in the evaluation of this study.
Most of the customers were found to be in the age group of 25-33 years old (65%) followed by the age group of 33-42 years (24%). The remaining 11 percent of the respondents falls on the remaining three age groups: 43-50, 18-24 and over 51 respectively. According to CSO (2011) Ireland’s total population of male-female between 15 and 64 years old is 3,080,250. This number represents the total of the target population object of this study.

The sample of this study differs significantly from the data provided by the CSO (2011) according which 18.84 per cent of target population of both sexes is attributed to the age group 15-24 years; almost 48.70 per cent of target population is between 25-44 years and the remaining 32.46 falls into category between 45-64 years.

The nationality frequency shows that the majority of the respondents are Irish customers (69%) followed by Non-Irish (31%) mainly: Polish, Italian and Spanish. According to CSO (2011) Ireland’s population consist 3,927,143 (87.9 %) of Irish citizens and 544,357 (12.1%) of Non-Irish citizens. The ratio of this study differs from the ratio provided by CSO due to the fact that the sample of this study was taken limited to Dublin area.

The demographic variable ‘ResiDuration’ presented in Table 4.1 describes the length of time the respondents live in Ireland from a hundred respondents; 92 per cent live in Ireland for at least 6 years, and the remaining 8 per cent reside in Ireland for duration of less than 6 years.

The aim of this study is to measure the level of customer satisfaction with ZARA services and garments, therefore one of the very first questions in Section II was asking the respondent: ‘Are you a Zara Customer?’ On negative answer to this question a courtesy message prompted avoiding the respondent involvement from further participation in this study.
Because the questionnaires were distributed using the snowball method, this was one of the measures taken by researcher to ensure that the questionnaires will be completed only by the customers of ZARA.

The next question was designed to measure how long the customers buy ZARA garments. As displayed in Table 4.1 majority of respondents and as much as 72 per cent have been using the ZARA garments for at least 3 years followed by 24 per cent of respondents that are shopping in ZARA between a year and 3 years.

Answering the question when was your last visit in ZARA 41 per cent of respondents responded that this has taken place at least 3 months ago, followed by 21 per cent of customers that were shopping in ZARA during the month the research was taken; another 20 per cent of participants were in ZARA 2 months ago and 18 per cent claimed its presence in ZARA in the month preceding the survey.

Table 4.1 Demographic Data-Summary table

<table>
<thead>
<tr>
<th>Demographic Variable</th>
<th>Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENDER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>31</td>
<td>31.0</td>
</tr>
<tr>
<td>Female</td>
<td>69</td>
<td>100.0</td>
</tr>
<tr>
<td>AGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-33</td>
<td>69</td>
<td>69.00</td>
</tr>
<tr>
<td>34-42</td>
<td>24</td>
<td>93.0</td>
</tr>
<tr>
<td>>43</td>
<td>7</td>
<td>100.0</td>
</tr>
<tr>
<td>NATIONALITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Irish</td>
<td>31</td>
<td>31.0</td>
</tr>
<tr>
<td>Irish</td>
<td>69</td>
<td>100.0</td>
</tr>
<tr>
<td>RESIDENCE DURATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td><6</td>
<td>8</td>
<td>8.0</td>
</tr>
<tr>
<td>>6</td>
<td>92</td>
<td>100.0</td>
</tr>
<tr>
<td>CUSTOMER DURATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 yr.</td>
<td>4</td>
<td>4.0</td>
</tr>
<tr>
<td>1-3 yrs.</td>
<td>24</td>
<td>28.0</td>
</tr>
<tr>
<td>>3 yrs.</td>
<td>72</td>
<td>100.0</td>
</tr>
<tr>
<td>LAST VISIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This month</td>
<td>21</td>
<td>21.0</td>
</tr>
<tr>
<td>Last month</td>
<td>18</td>
<td>39.0</td>
</tr>
</tbody>
</table>
4.3 Descriptive Statistics

4.3.1 Service

4.3.1.1 Descriptive Statistics

The customers’ perception of service quality was measured on the Likert scale from 1-Strongly Disagree to 5-Strongly Agree. Twenty items that measure level of customer satisfaction with dimensions of service quality (SERVQUAL) were present in the third part of the questionnaire. Table 4.2 presents these items by using descriptive statistics. SPPS output below shows mean value for twenty variables used to describe quality of service. From this table, can be seen that service communication 1 (SERVCOMM 1) was the lowest with its 3.55 (out of 5), while service security (SERVSEC 1, 2) were both 4.41 (out of 5) and were rated by customers of ZARA as the highest score.

Table 4.2 SERVQUAL- Descriptive Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>4.3800</td>
</tr>
<tr>
<td>ServRES1</td>
<td>4.0600</td>
</tr>
<tr>
<td>ServRES2</td>
<td>3.7800</td>
</tr>
<tr>
<td>ServRES3</td>
<td>3.7100</td>
</tr>
<tr>
<td>ServRES4</td>
<td>3.8100</td>
</tr>
<tr>
<td>ServCOURT1</td>
<td>4.1800</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>4.0400</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>3.5500</td>
</tr>
<tr>
<td>ServCRED1</td>
<td>4.2200</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>3.8300</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>4.1100</td>
</tr>
<tr>
<td>ServSEC1</td>
<td>4.4100</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>4.4100</td>
</tr>
</tbody>
</table>
4.3.1.2 Reliability Data Analysis

The main purpose for the reliability analysis of data is to verify the veracity of the data as per Bryman et al. (2009). The reliability coefficient Cronbach’s Alpha for the SERVQUAL scale is 0.923. Cronbach’s Alpha varies between 0 and 1 and the nearer the result is to 1- and preferably at over 0.8- the more internally reliable is the scale (Bryman, et al. 2009).

Table 4.3 Reliability Statistics- SERVQUAL

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.923</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4.4 presents what would happen to the scale after the deletion of each item. It can be noticed that after deletion of any of the item the lowest value is 0.917 which is still over the acceptable level of 0.8. That means that all items contribute equally to the scale and a deletion of any item would not change significantly Cronbach’s alpha value. The scale would still be reliable.
Table 4.4 Reliability Data Analysis for SERVQUAL (Internal Correlation)

Item-Total Statistics

<table>
<thead>
<tr>
<th>Description of each item</th>
<th>Descriptio n of each item</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1: Consistency; the firm performs the service right the first time.</td>
<td>.924</td>
</tr>
<tr>
<td>ServRES1: Willingness or readiness of employees to provide service</td>
<td>.917</td>
</tr>
<tr>
<td>ServRES2: Employees respond to customers upon request.</td>
<td>.919</td>
</tr>
<tr>
<td>ServRES3: Waiting time outside fitting room is acceptable</td>
<td>.923</td>
</tr>
<tr>
<td>ServRES4: Waiting time taken at the billing counter is acceptable</td>
<td>.920</td>
</tr>
<tr>
<td>ServCOURT1: Personnel always look professional.</td>
<td>.919</td>
</tr>
<tr>
<td>ServCOURT2: Employees are consistently courteous with customers.</td>
<td>.917</td>
</tr>
<tr>
<td>ServCOMM1: Personnel provide appropriate explanation on garments.</td>
<td>.917</td>
</tr>
<tr>
<td>ServCRED1: Performs its service right the first time.</td>
<td>.920</td>
</tr>
<tr>
<td>ServCRED2: Company shows a sincere interest in solving any problems.</td>
<td>.920</td>
</tr>
<tr>
<td>ServCRED3: Company is known for keeping its promises</td>
<td>.919</td>
</tr>
<tr>
<td>ServSEC1: Customers feel safe in transactions with ZARA.</td>
<td>.922</td>
</tr>
<tr>
<td>ServSEC2: Customers feel safe shopping at ZARA.</td>
<td>.923</td>
</tr>
<tr>
<td>ServUNDER1: Employees provide customer individual attention.</td>
<td>.918</td>
</tr>
<tr>
<td>ServUNDER2: Behaviour of employees instill confidence in customers.</td>
<td>.917</td>
</tr>
<tr>
<td>ServUNDER3: Employees have the knowledge to answer customers’ enquiries.</td>
<td>.919</td>
</tr>
<tr>
<td>ServUNDER4: Employees understand the specific needs of their customers.</td>
<td>.918</td>
</tr>
<tr>
<td>ServTANG1: Stores atmosphere and decor are appealing.</td>
<td>.920</td>
</tr>
<tr>
<td>ServTANG2: Employees’ uniforms appear neat.</td>
<td>.920</td>
</tr>
<tr>
<td>ServTANG3: Materials associated with the service are visually appealing.</td>
<td>.918</td>
</tr>
</tbody>
</table>

Full explanations of abbreviations and terms- Appendix H

Table 4.5 Summary Item Statistics for SERVQUAL

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Range</th>
<th>Max / Min</th>
<th>Variance</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Means</td>
<td>3.960</td>
<td>3.540</td>
<td>4.410</td>
<td>.870</td>
<td>1.246</td>
<td>.079</td>
<td>20</td>
</tr>
<tr>
<td>Item Variances</td>
<td>.472</td>
<td>.265</td>
<td>.673</td>
<td>.408</td>
<td>2.543</td>
<td>.013</td>
<td>20</td>
</tr>
<tr>
<td>Inter-Item Correlations</td>
<td>.377</td>
<td>-.027</td>
<td>.964</td>
<td>.990</td>
<td>-36.263</td>
<td>.026</td>
<td>20</td>
</tr>
</tbody>
</table>
To check the reliability of SERVQUAL scale also inter-item correlations can be analysed. In a reliable scale all items should correlate with the total. The item does not correlate if the value is less than 0.30. Additionally, items with low correlations may have to be dropped (Field, 2005). For this study the inter-item correlation is 0.377, which is encouraging.

Table 4.6 Reliability statistics- SERVQUAL scale

<table>
<thead>
<tr>
<th>Item</th>
<th>Cronbach’s Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsiveness</td>
<td>.780</td>
<td>4</td>
</tr>
<tr>
<td>Courtesy</td>
<td>.808</td>
<td>2</td>
</tr>
<tr>
<td>Credibility</td>
<td>.670</td>
<td>3</td>
</tr>
<tr>
<td>Security</td>
<td>.981</td>
<td>2</td>
</tr>
<tr>
<td>Understanding</td>
<td>.881</td>
<td>4</td>
</tr>
<tr>
<td>Tangibility</td>
<td>.802</td>
<td>3</td>
</tr>
<tr>
<td>Reliability & communication</td>
<td>.330</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4.6 presents eight SERVQUAL determinants that were taken into account in order to conduct this study. Generally, alpha values for determinants of service quality are high. Reliability and communication item scored low, and they were measured together since both of them contained only one question which made it impossible to analyze these items individually.

4.3.1.3 Determinants of Service Quality in Clothing Industry

The purpose of the factors analysis is to reduce the number of variables and to decide which items need to be kept.
The average number of communalities found after adding up all communalities is 14.738 which after dividing by the number of communalities gives 0.7369, and which as per Kraiser’s criterion is greater than 0.7.

Table 4.7 Communalities-SERVQUAL scale

<table>
<thead>
<tr>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>1.000</td>
</tr>
<tr>
<td>ServRES1</td>
<td>1.000</td>
</tr>
<tr>
<td>ServRES2</td>
<td>1.000</td>
</tr>
<tr>
<td>ServRES3</td>
<td>1.000</td>
</tr>
<tr>
<td>ServRES4</td>
<td>1.000</td>
</tr>
<tr>
<td>ServCOURT1</td>
<td>1.000</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>1.000</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>1.000</td>
</tr>
<tr>
<td>ServCRED1</td>
<td>1.000</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>1.000</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>1.000</td>
</tr>
<tr>
<td>ServSEC1</td>
<td>1.000</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>1.000</td>
</tr>
<tr>
<td>ServUNDER1</td>
<td>1.000</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>1.000</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>1.000</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>1.000</td>
</tr>
<tr>
<td>ServTANG1</td>
<td>1.000</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>1.000</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
*Full explanations of abbreviations and terms- Appendix H

The Varimax (orthogonal) rotation with Kaiser Normalization was used to extract the number of factors for Service Quality.
Table 4.8 Rotated Component Matrix- SERVQUAL scale

<table>
<thead>
<tr>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>0.008</td>
<td>0.311</td>
<td>0.021</td>
<td>0.048</td>
<td>0.842</td>
</tr>
<tr>
<td>ServRES1</td>
<td>0.535</td>
<td>0.144</td>
<td>0.100</td>
<td>0.489</td>
<td>0.349</td>
</tr>
<tr>
<td>ServRES2</td>
<td>0.634</td>
<td>-0.085</td>
<td>0.091</td>
<td>0.500</td>
<td>0.131</td>
</tr>
<tr>
<td>ServRES3</td>
<td>0.231</td>
<td>-0.353</td>
<td>0.353</td>
<td>0.281</td>
<td>0.590</td>
</tr>
<tr>
<td>ServRES4</td>
<td>0.321</td>
<td>-0.181</td>
<td>0.583</td>
<td>0.015</td>
<td>0.534</td>
</tr>
<tr>
<td>ServCOURT1</td>
<td>0.275</td>
<td>0.170</td>
<td>0.348</td>
<td>0.731</td>
<td>-0.040</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>0.522</td>
<td>0.102</td>
<td>0.083</td>
<td>0.680</td>
<td>0.252</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>0.770</td>
<td>0.005</td>
<td>0.282</td>
<td>0.060</td>
<td>0.189</td>
</tr>
<tr>
<td>ServCRED1</td>
<td>0.033</td>
<td>0.382</td>
<td>0.171</td>
<td>0.508</td>
<td>0.568</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>0.606</td>
<td>0.436</td>
<td>0.100</td>
<td>-0.090</td>
<td>0.256</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>0.374</td>
<td>0.448</td>
<td>0.357</td>
<td>0.026</td>
<td>0.400</td>
</tr>
<tr>
<td>ServSEC1</td>
<td>0.087</td>
<td>0.892</td>
<td>0.176</td>
<td>0.145</td>
<td>0.068</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>0.035</td>
<td>0.900</td>
<td>0.178</td>
<td>0.148</td>
<td>0.093</td>
</tr>
<tr>
<td>ServUNDER1</td>
<td>0.839</td>
<td>0.038</td>
<td>0.074</td>
<td>0.228</td>
<td>0.083</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>0.668</td>
<td>0.172</td>
<td>0.188</td>
<td>0.397</td>
<td>0.118</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>0.786</td>
<td>0.000</td>
<td>0.210</td>
<td>0.153</td>
<td>0.072</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>0.816</td>
<td>0.089</td>
<td>0.172</td>
<td>0.149</td>
<td>-0.015</td>
</tr>
<tr>
<td>ServTANG1</td>
<td>0.130</td>
<td>0.385</td>
<td>0.698</td>
<td>0.077</td>
<td>0.185</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>0.173</td>
<td>0.255</td>
<td>0.752</td>
<td>0.342</td>
<td>-0.108</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>0.329</td>
<td>0.139</td>
<td>0.691</td>
<td>0.158</td>
<td>0.219</td>
</tr>
</tbody>
</table>

*Full explanations of abbreviations and terms- Appendix H

Extraction Method: Principal Component Analysis.

Table 4.8 shows the rotated component matrix which is a matrix of the factor loadings for each variable onto each factor (Field, 2005). SPSS extracted all factors with eigen values greater than 1, which left the researcher with five factors. The highlighted items were grouped to the five components and only loads that exceed 0.5 were taken into account (Field, 2005). That means that one factor- service credibility (SERVCRE3D3) - has been discarded, and this information will be lost.
Most of the items values have changed after excluding the factor with the lowest load value- SERVCRED3 (Appendix G).

Table 4.9 Reliability Statistic for new scale (after extraction SERVCRED3)

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.919</td>
<td>19</td>
</tr>
</tbody>
</table>

Because the number of item in the scale has changed the reliability coefficient Cronbach’s Alpha for the SERVQUAL scale has changed from 0.923 to 0.919 (Table 4.9). This is still over required 0.8 and this shows that the new scale is reliable.

Table 4.10 Determinants of Service Quality in the retailing clothing industry

<table>
<thead>
<tr>
<th>New Factors</th>
<th>Determinants of SERVQUAL</th>
<th>Main Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understanding customers needs</td>
<td>Responsiveness (2) Employees are always willing and ready to provide service; Employees are never too busy to respond to your request.</td>
<td>Employees provide you individual attention; The behaviour of employees instill confidence in customers; Employees have the knowledge to answer customers’ enquiries; Employees understand the specific needs of their customers.</td>
</tr>
<tr>
<td></td>
<td>Communication (1) Personnel provide appropriate explanation on garments.</td>
<td>The co. shows a sincere interest in solving any problems.</td>
</tr>
<tr>
<td></td>
<td>Credibility (1) The company performs its service right the first time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding (4) Employees provide you individual attention; The behaviour of employees instill confidence in customers; Employees have the knowledge to answer customers’ enquiries; Employees understand the specific needs of their customers.</td>
<td></td>
</tr>
<tr>
<td>2. Security</td>
<td>Security (2) You feel safe in your transactions with the retailer; You feel safe shopping.</td>
<td></td>
</tr>
<tr>
<td>3. Tangibles</td>
<td>Responsiveness (1) The waiting time taken at the billing counter is acceptable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tangibles (3) Stores atmosphere and decor are appealing; Employees’ uniforms appear neat; Materials associated with the service are visually appealing.</td>
<td></td>
</tr>
<tr>
<td>4. Courtesy</td>
<td>Courtesy (2) Personnel always look professional. Employees are consistently courteous with customers.</td>
<td></td>
</tr>
<tr>
<td>5. Serviceability</td>
<td>Reliability (1) The billing is always accurate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Responsiveness (1) The waiting time outside fitting room is acceptable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credibility (1) The company performs its service right the first time.</td>
<td></td>
</tr>
</tbody>
</table>

Source: As per factor extraction- SPSS data
As per Total Variance Table (Appendix F) it can be seen that the dispersion of the five factors accounts for 73.69% with the highest value of Factor 1 that accounts for 41.68%. Table 4.10 presents factors, determinants of service quality in retailing clothing industry which were established for this study after the factor extraction process.

Table 4.11 New Determinants of service quality

<table>
<thead>
<tr>
<th>Determinants</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understanding</td>
<td>29.91/8</td>
<td>3.738</td>
</tr>
<tr>
<td>2. Security</td>
<td>8.82/2</td>
<td>4.410</td>
</tr>
<tr>
<td>3. Tangibles</td>
<td>15.84/4</td>
<td>3.960</td>
</tr>
<tr>
<td>4. Courtesy</td>
<td>8.22/2</td>
<td>4.110</td>
</tr>
<tr>
<td>5. Serviceability</td>
<td>12.31/3</td>
<td>4.103</td>
</tr>
</tbody>
</table>

Table 4.11 presents new variables that were extracted from the factor analysis and grouped into five main dimensions. All items have been computed using transform option in SPSS and then the Descriptive Statistics (Appendix F) for new values were adopted. This resulted in the new values for each determinant. The maximum score on the scale is equal to five. ZARA customers are quiet fairly satisfied with the level of service received in the store as most of the determinants except ‘understanding customer needs’ and ‘tangibles’ with 3.73 and 3.96 respectively, are above the mean value 4. The highest scored ‘security’, and that means that the customers feel safe and secure while making their transactions in ZARA. Likewise courtesy and serviceability follow security. The customers seem to be satisfied with ZARA personnel and their willingness to help, and they agree that serviceability such as reliability, responsiveness and credibility are meeting their expectations.

Regression analysis will be used to further explore the best predictor of service quality.
4.3.1.4 Regression Analysis

The regression analysis was used to predict values of the dependent variable (DV)—overall customer satisfaction from the independent variables (IVs)—determinants of service and product quality. All new factors arising after the factor extraction analysis were entered as independent variables and computed.

Table 4.12 Variables Entered/Remover used in the Regression Analysis for Service

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serviceability, Security, Understanding, Tangibles, Courtesy(a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a All requested variables entered.
b Dependent Variable: CUSTSAT1

Table 4.13 Overall fit of the model—Model Summary (b)

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.532(a)</td>
<td>.283</td>
<td>.245</td>
<td>.48624</td>
<td>2.170</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant) Serviceability, Security, Understanding, Tangibles, Courtesy
b. Dependent Variable: CUSTSAT1

The model summary table provides the value of R and R^2 for the model that has been derived and reports the strength of the relationship between the model and the dependent variable, customer satisfaction (Field, 2005). For the predictors a, R has a value of .532 or 53% of variances in customer satisfaction.

The adjusted R^2 gives researcher some idea of how well the model generalizes and ideally this value should be very close to the value of R^2 (Field, 2005).

In this model however the difference for the final model is significant:

.283-.245=3.8%
This means that if the model were derived from the population rather than a sample it would account for approximately 3.8% less variance in the outcome.

The last value in Table 4.13- Durbin-Watson the closer to 2 the value is the better, and for these data the value is 2.170, which is perfect and it is almost self-evident that the assumption has been met (Appendix G).

Table 4.14 ANOVA (b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>8.776</td>
<td>5</td>
<td>1.755</td>
<td>7.424</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>22.224</td>
<td>94</td>
<td>.236</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31.000</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Predictors: (Constant), Serviceability, Security, Understanding, Tangibles, Courtesy
b Dependent Variable: CUSTSAT1

Table 4.14 illustrates analysis of variance (ANOVA) and tests whether the model is acceptable from a statistical point of view. The most important part of the Table 4.14 is the F-ratio that is 7.424 which is significant at p<.001 (as the value Sig. is .000). This tells us that there is a 0% chance that an F-ratio this large would happen by chance alone (Field, 2005). This regression results in a much better prediction of overall customer satisfaction than using the mean value of customer satisfaction.

The ANOVA model results in a good degree of prediction of the outcome variable, but will not tell about the individual contributions of variables in the model.

Table 4.15 shows details of the model parameters (the beta values) and the significance of these values.
Table 4.15 Coefficients-Service Quality

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>1.541</td>
<td>.518</td>
<td>2.975</td>
</tr>
<tr>
<td></td>
<td>Understanding</td>
<td>.033</td>
<td>.016</td>
<td>.268</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>.025</td>
<td>.051</td>
<td>.047</td>
</tr>
<tr>
<td></td>
<td>Tangibles</td>
<td>.048</td>
<td>.031</td>
<td>.185</td>
</tr>
<tr>
<td></td>
<td>Courtesy</td>
<td>-.069</td>
<td>.063</td>
<td>-.138</td>
</tr>
<tr>
<td></td>
<td>Serviceability</td>
<td>.093</td>
<td>.036</td>
<td>.278</td>
</tr>
</tbody>
</table>

The B-values show the individual contribution of each predictor to the model and tell us about the relationship between overall customer satisfaction (CUSTSAT1) and each predictor (Field, 2005). All predictors except courtesy have positive b-values indicating positive relationships, and that means that once each of these values namely: understanding/ security/ tangibles/courtesy/serviceability increases, customer satisfaction increases. Moreover this value indicates that as for example understanding of customers’ increases by one unit, overall customer satisfaction increase by .033 units (B value for understanding). According to Field (2005) this interpretation is true only if the effects of other predictors are held constant. T-tests measures of whether the predictor contributing to the overall model. The predictor is making a significant contribution to the model if the Sig. value is less than .05. The smaller the value of Sig. and the larger the value of t the greater the contribution of that predictor (Field, 2005).

The coefficient table shows that serviceability (t (2.578), Sig.012) and understanding (t (2.083), Sig.040) are both significant predictors of customer satisfaction with service quality.

As the standardized β values are directly comparable, they can provide a better insight into the importance of a predictor in the model (Bryan et al. 2009).
The standardized β values of understanding and serviceability are 278 and 268 respectively indicating that both variables have a comparable degree of importance in the SERVQUAL model.

Summarizing, serviceability is the best predictor of customer satisfaction with service quality with its highest standardized coefficient, T values and lowest significance. Table 4.16 presents predictors of overall customer satisfaction with service quality grouped in order of significance. Please refer to ‘Appendix J’ for Additional Statistics.

Table 4.16 Predictors of service quality in order of importance

<table>
<thead>
<tr>
<th>Rank</th>
<th>Predictor</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serviceability</td>
<td>Accurate billing, acceptable waiting time outside fitting rooms, good service.</td>
</tr>
<tr>
<td>2</td>
<td>Understanding</td>
<td>Employees are willing to provide service, are not too busy to respond to customer’s request, provide explanation on garments, and show customers individual attention.</td>
</tr>
<tr>
<td>3</td>
<td>Tangibles</td>
<td>Acceptable waiting time at the billing counter, Stores atmosphere and decor are appealing Employees’ uniforms appear neat.</td>
</tr>
<tr>
<td>4</td>
<td>Courtesy</td>
<td>Personnel look professional and are courteous with customers.</td>
</tr>
<tr>
<td>5</td>
<td>Security</td>
<td>Feeling safe with transactions and while shopping.</td>
</tr>
</tbody>
</table>
4.3.2 Garments

4.3.2.1 Descriptive Statistics

Fourteen items have been entered to measure level of customer satisfaction with dimensions of product quality and were present in the fourth part of the questionnaire. From the mean values calculated for each of the fourteen variables, perceived quality (GARMPERCQL 1) was the lowest among all items with its 3.90 (out of 5), while garments aesthetic (GARMAEST1) was 4.34 (out of 5) and was rated by customers of ZARA with the highest value (Table 4.17).

Table 4.17 Garvin’s Product Quality- Descriptive Statistics

<table>
<thead>
<tr>
<th>Description</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>4.0000</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>4.2200</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>4.0100</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>4.1000</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>4.0900</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>4.1400</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>4.0700</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>4.0000</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>4.0800</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>4.3400</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>4.2500</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>3.9400</td>
</tr>
<tr>
<td>GarmPERCQ1</td>
<td>3.9000</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>3.9200</td>
</tr>
</tbody>
</table>

*explanations of abbreviations and terms- Appendix I

4.3.2.2 Reliability Data Analysis

Table 4.18 shows that the reliability coefficient Cronbach’s Alpha for the fourteen items created to describe product quality is 0.914 which is also above required 0.8. Therefore the scale is reliable.
Table 4.18 Reliability Statistics- Garvin’s dimensions

<table>
<thead>
<tr>
<th>Cronbach’s Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.914</td>
<td>14</td>
</tr>
</tbody>
</table>

In Table 4.19 it can be noticed that after the removal of each item, the lowest value is 0.902 which is still over the acceptable level of 0.8. This indicates that all items contribute equally to the Garvin’s scale and a deletion of any item will not change significantly Cronbach’s alpha value. The scale will still be reliable.

Table 4.19 Reliability Data Analysis for Garments Quality (Internal Correlation)

<table>
<thead>
<tr>
<th>Description of each item</th>
<th>Cronbach’s Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>ZARA provide a variety of sizes.</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>ZARA garments are comfortable.</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>ZARA garments are ‘easy care’ (i.e. washing, ironing).</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>Zara garments fit well.</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>ZARA garments wear well within a specific period of time.</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>The ZARA branded garments are of good reputation.</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>The description of garments is consistent with product</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>ZARA garments are durable (considering material, structure)</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>ZARA garments have clear care labels and guarantees.</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>ZARA garments are stylish</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>ZARA garments look modern and are of original design.</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>ZARA garments fabric line/ details are of high quality.</td>
</tr>
<tr>
<td>GarmPERCQ1</td>
<td>ZARA brands garments are of high quality.</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>ZARA garments are good value for money.</td>
</tr>
</tbody>
</table>

* Full explanations of abbreviations and terms- Appendix I
Table 4.20 Summary Item Statistics for Garments Quality

For product quality the inter-item correlation is 0.440, which well above expected value of 0.30.

Table 4.21 Reliability statistics- GARVIN dimensions

Table 4.21 presents Garvin’s Eight Dimensions of Product Quality which were taken into account in order to conduct this study. Generally, the alpha values for determinants of service quality are high, except for features and serviceability that are below required 0.7. These items as well as reliability & durability were measured together since both of them contained only one question which made it impossible to analyze the items separately. For this reason, the Cronbach’s Alpha value for these 4 dimensions may not be reliable and the factor rotation will be conducted in order to extract all factors with eigen values greater than 1 (Field, 2005).
4.3.2.3 Determinants of Garments Quality in Clothing Industry

Similar approach to service quality is taken to reduce the number of factors in Garvin’s scale. The first Kaiser’s criterion for extraction has been met as the number of variables is fourteen, and this criterion is accurate when there are less than 30 variables (Field, 2005).

Table 4.22 Communalities-Garvin dimensions

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>1.000</td>
<td>.729</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>1.000</td>
<td>.781</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>1.000</td>
<td>.602</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>1.000</td>
<td>.625</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>1.000</td>
<td>.726</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>1.000</td>
<td>.663</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>1.000</td>
<td>.478</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>1.000</td>
<td>.789</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>1.000</td>
<td>.554</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>1.000</td>
<td>.742</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>1.000</td>
<td>.704</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>1.000</td>
<td>.597</td>
</tr>
<tr>
<td>GarmPERCOQ1</td>
<td>1.000</td>
<td>.683</td>
</tr>
<tr>
<td>GarmPERCOQ2</td>
<td>1.000</td>
<td>.601</td>
</tr>
</tbody>
</table>

* Full explanations of abbreviations and terms- Appendix I

Table 4.23 Rotated Component Matrix- Garments

<table>
<thead>
<tr>
<th></th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>GarmPERF1</td>
<td>.114</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>.306</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>.010</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>.294</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>.076</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>.708</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>.611</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>.486</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>.472</td>
</tr>
</tbody>
</table>
For garments quality as illustrated in Table 4.23, after SPSS extraction the researcher was left with three factors. The highlighted items were grouped to the three components and similarly to service quality factors only loads that exceed 0.5 were taken into account (Field, 2005). Garments serviceability (GarmSERV1) with its values below 0.5 has been discarded, and this information will be lost. New factor analysis has been conducted after exclusion GARMSERV1 item (Appendix G).

Table 4.24 Reliability Statistic for new scale (after extraction GARMSERV1)

<table>
<thead>
<tr>
<th>Reliability Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach's Alpha</td>
</tr>
<tr>
<td>N of Items</td>
</tr>
<tr>
<td>.907</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

Also Cronbach’s alpha value has changed with the new scale from .914 to .907 (Table 4.24).

Table 4.25 Determinants of Garments Quality in retailing clothing industry

<table>
<thead>
<tr>
<th>New Factor</th>
<th>Determinants of Product Quality</th>
<th>Questions associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aesthetics</td>
<td>Conformance (2)</td>
<td>Garments are of good reputation; The description of garments is consistent with the actual product.</td>
</tr>
<tr>
<td></td>
<td>Aesthetic (3)</td>
<td>Garments are stylish; Garments look modern and are of original design; Garments fabric line/ details are of high quality.</td>
</tr>
<tr>
<td></td>
<td>Perceived Quality</td>
<td>Garments are of high quality.</td>
</tr>
</tbody>
</table>
2. Reliability

<table>
<thead>
<tr>
<th>Performance (1)</th>
<th>Garments are ‘easy care’.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability (1)</td>
<td>Garments wear well within a specific period of time.</td>
</tr>
<tr>
<td>Durability (1)</td>
<td>Garments are durable.</td>
</tr>
<tr>
<td>Perceived Quality (1)</td>
<td>Garments are good value for money.</td>
</tr>
</tbody>
</table>

3. Performance

| Performance (2) | The co. provide a variety of sizes; Garments are comfortable. |
| Feature (1) | Garments fit well. |

Source: As per factors extraction- SPPS Data

As per Total Variance Table (Appendix F) it can be seen that the dispersion of the three factors accounts for 66.23% with the highest value of Factor 1 that accounted for 48.49%.

Table 4.25 shows factors, dimensions of garments quality in retailing clothing industry which were established for this study after the factor extraction process.

Table 4.26 Descriptive Statistic- New Determinants of garments quality

<table>
<thead>
<tr>
<th>Determinants</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aesthetics</td>
<td>4.106</td>
<td>2.709</td>
</tr>
<tr>
<td>2. Reliability</td>
<td>4.005</td>
<td>2.155</td>
</tr>
<tr>
<td>3. Performance</td>
<td>4.106</td>
<td>1.476</td>
</tr>
</tbody>
</table>

The table above presents new variables for garments quality that were extracted from the factor analysis and grouped into three main determinants. Similarly to service quality, using the transform option in SPSS all items have been computed for each factor separately and then the Descriptive Statistics was used again for new factors (Appendix F). Table 4.26 shows that ZARA customers are very satisfied with the quality of ZARA garment as all factors were above the mean value 4 (maximum score was 5).

The highest value is presented by two determinants ‘performance’ and aesthetics.
The customers appreciate diverse styles and designs of ZARA garments, as well as the wide range of sizes that the brand is providing. The perception of brand, coolness, fit and style were all ranked high among most of the customers. Determining which factors are the most important for evaluating garments quality is essential, therefore the regression analysis will be taken to identify the most significant dimensions.

4.3.2.4 Regression Analysis

The new factors arising after the factor extraction (except GARMSERV1) analysis, were entered as independent variables, computed and renamed accordingly.

Table 4.27 Variables Entered/ Remover used in the Regression Analysis for Garments

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Performance, Reliability, Aesthetics(a)</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

(a) All requested variables entered.

(b) Dependent Variable: CUSTSAT1

Table 4.28 Overall fit of the GARVIN model- Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.647(a)</td>
<td>.418</td>
<td>.400</td>
<td>.43343</td>
<td>2.156</td>
</tr>
</tbody>
</table>

(a) Predictors: (Constant) Performance, Reliability, Aesthetics

(b) Dependent variable: CUSTSAT1

For the predictors a, R has a value of .647 or 64% of variances in customer satisfaction, and therefore it accounts for 64%. The adjusted R^2 is very close to the value of R^2 and this shows that the model generalizes well (Field, 2005).
The difference for the final model is (.418-.400)1.8% and this means that if the model were derived from the population rather than a sample it would account for approximately 1.8% less variance in the outcome.

The Durbin-Watson statistic, as already mentioned—the closer to 2 the value is the better, and for these data the value is 2.156, which is even better than for service quality, the assumption has been met.

Table 4.29 ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>12.965</td>
<td>3</td>
<td>4.322</td>
<td>23.004</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>18.035</td>
<td>96</td>
<td>.188</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31.000</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Predictors: (Constant), Performance, Reliability, Aesthetics
b Dependent Variable: CUSTSAT1

The F-ratio value is 23.004 which is significant at p<.001 (as the value Sig. is .000), and therefore there is a 0% chance that an F-ratio of this value would happen by chance alone.

Table 4.30 shows details of the model parameters (the beta values) and the significance of these values.

Table 4.30 Coefficients-Garments

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.588</td>
<td>.429</td>
<td>1.369</td>
</tr>
<tr>
<td></td>
<td>Aesthetics</td>
<td>.078</td>
<td>.022</td>
<td>.379</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>.053</td>
<td>.028</td>
<td>.204</td>
</tr>
<tr>
<td></td>
<td>Performance</td>
<td>.060</td>
<td>.040</td>
<td>.157</td>
</tr>
</tbody>
</table>

a Dependent Variable: CUSTSAT1
The B-values in this table show the individual contribution of each predictor to the Garvin model and tell us about the relationship between overall customer satisfaction (CUSTSAT1) and each predictor.

All garments predictors have positive b-values indicating positive relationships, and that means that once each of them increases, customer satisfaction increases. Moreover these values indicate that as for example one item- garments aesthetics increases by one unit, overall customer satisfaction increase by .078 units (B value for aesthetics).

The coefficient table (Table 4.30) shows that aesthetics (t (3.500), Sig.001) and reliability (t (1.927), Sig.057) are both significant predictors of customer satisfaction with garments quality, as Sig. value is <.05.

As already explained the standardized β values can provide a better insight into the importance of a predictor in the model. The standardized β values of aesthetics and reliability are .379 and .204 respectively indicating the level of importance in the garments quality model.

Aesthetics is the best predictor of customer satisfaction with garments quality with its highest standardized coefficient, T values and lowest significance.

The Table 4.31 presents predictors of overall customer satisfaction with product quality grouped in order of significance. Please refer to ‘Appendix K’ for Additional Statistics.

Table 4.31 Predictors of Garments Quality in order of importance

<table>
<thead>
<tr>
<th>Rank</th>
<th>Predictor</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aesthetics</td>
<td>Good reputation of garments, consistent description on the labels. Stylish, modern looking garments of high quality.</td>
</tr>
<tr>
<td>2</td>
<td>Reliability</td>
<td>‘Easy care’ garments that wear well within specific period of time, good value for money.</td>
</tr>
<tr>
<td>3</td>
<td>Performance</td>
<td>Comfortable garments; variety of sizes provided.</td>
</tr>
</tbody>
</table>

Source: as per factors extraction- SPSS
4.3.3 Overall Customer Satisfaction

4.3.3.1 Descriptive Statistics- Overall Customer Satisfaction

Two last questions of the questionnaire aiming to investigate the overall level of customer satisfaction were not part of SERVQUAL or Garvin’s Eight Dimensions of Product Quality and therefore are to be evaluated separately.

Table 4.32 Descriptive Statistics- Overall Customer Satisfaction

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTSAT1</td>
<td>4.1000</td>
</tr>
<tr>
<td>CUSTSAT2</td>
<td>4.1600</td>
</tr>
</tbody>
</table>

The overall level of customer satisfaction with ZARA services and garments is over 4.00 which means that most of the customers are fairly satisfied. The mean value of the second item CUSTSAT2 is 4.16, that is, the customers expressed their intention to re-visit the shop soon.

4.3.3.2 T-Test

To further investigate the levels of satisfaction the analysis based on the gender of respondents was performed.

Table 4.33 T-Test- Overall Customer Satisfaction – Gender

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTSAT1</td>
<td>31</td>
<td>4.0000</td>
</tr>
<tr>
<td>MALE</td>
<td>69</td>
<td>4.1449</td>
</tr>
</tbody>
</table>
Data presented in Table 4.33 tell that female customers are slightly more satisfied with ZARA services and products than males. This finding suggest that if there was more focus on males satisfaction put in place by the company the average level would rise. Because the results of this test have shown some differences when it comes to gender and customer satisfaction, it has been decided to run another analysis based on nationality.

Table 4.34 T-Test- Overall Customer Satisfaction – Nationality

<table>
<thead>
<tr>
<th>Nationality</th>
<th>N</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTSAT1 NON-IRISH</td>
<td>31</td>
<td>4.0323</td>
</tr>
<tr>
<td>IRISH</td>
<td>69</td>
<td>4.1304</td>
</tr>
</tbody>
</table>

When it comes to customer satisfaction and nationality, again there is only a slight difference between Irish and Non-Irish customers. Irish customers tend to be slightly more satisfied with the level of customer service and product quality received in ZARA; 4.03 versus 4.13 in the scale of 1-5.
5. Conclusions and Recommendations

5.1 Introduction

This chapter will present the author’s conclusions and implications, based on the analysis provided in Chapter 5, which aim to answer the research questions. Implication for management and recommendations for future research will be addressed at the end of this Chapter.

5.2 Research questions

The purpose of this study was to measure customer satisfaction with both service and garments quality delivered by ZARA Ireland. The study examined customer satisfaction with service quality determinants (SERVQUAL), product quality dimensions (Garvin Eight Dimensions of Product Quality), and overall customer satisfaction with ZARA Ireland.

The research aimed to answer the following research objectives that were constructed specifically for this study:

1. To apply, rank and describe the impact of SERVQUAL factors on customer satisfaction in ZARA Ireland.

2. To apply, rank and describe the quality dimensions of ZARA products in Ireland and their impact on customer satisfaction using Garvin eight dimensions of Product Quality.

3. To measure and describe the overall customer satisfaction with ZARA services and products in Ireland.
1. To apply, rank and describe the impact of SERVQUAL factors on customer satisfaction in ZARA Ireland.

Traditionally, service quality has been conceptualized as the difference between customer expectations regarding a service to be received and perceptions of the service being received (Grönroos, 2001; Parasuraman, Zeithaml, and Berry, 1988). Service quality has been also referred as the extent to which a service meets customers’ needs or expectations (Lewis and Mitchell, 1990).

Results from this study show that all factors selected affect the customer satisfaction to the great extent. Customer service is the most powerful stimulant of brand loyalty. After the data analysis it has been discovered that different aspects of customer service such as understanding/knowing the customer, security, tangibles, courtesy, and serviceability play a role in customer satisfaction and are valuable aspects to the operations of retail services.

To investigate the dimensions of service quality in the retailing clothing industry in Ireland the SERVQUAL scale was adopted. The validity and reliability of the scale was estimated by providing the reliability data analysis (Table 5.6) and by checking the Cronbach’s Alpha values for the scale and for each dimension of service quality. The reliability coefficient for the SERVQUAL is 0.923 which is at over 0.8 and therefore means that the scale is reliable (Bryman, et al., 2009).

Moreover, to further explore the determinants of service quality, a factor extraction (varimax rotation) was executed. This analysis left researcher with five factors, and helped to exclude loads with the value lower that 0.5 (Field, 2005). One factor out of 20 has been excluded from the research due to low reliability- service credibility (SERVCRED3).
However, to determine which factors are the most important when evaluating the quality of service, regression analysis was conducted. Serviceability (t (2.578), Sig.012) and understanding (t (2.083), Sig.040) are both significant predictors of customer satisfaction with service quality followed by tangibles, courtesy and security respectively.

After the extensive review of the literature and the data analysis of this research it is clear that service quality in its general aspect has a very significant role in creating satisfaction of ZARA customers.

2. To apply, rank and describe the quality dimensions of ZARA products in Ireland and their impact on customer satisfaction using Garvin eight dimensions of Product Quality.

Product quality is one of the most important construct in the marketing which has significant effect on the overall customer satisfaction. According to Tsiotsou (2005), as already mentioned in the Literature Review Chapter, with the higher quality of the goods customer satisfaction with services increases and in turn with low quality of the products evaluation of the service in customer’s eyes will be influenced negatively. Therefore, quality improvement has become the important tool in differentiating the products and services in the competitive market. As per Jones & Hill (2010) in order to gain a competitive positioning the firm must stress product innovation and quality-as-excellence which is defined by the author as a perspective that relates to product’s design and styling, its aesthetic appeal, its functions and features and the level of service associated with the delivery of the product.

Customers’ perception of clothing quality seems to be multidimensional and includes both concrete and abstract features of the product.
Personal variables like knowledge, interest, and involvement may be all key factors in determining how consumers evaluate quality (Hines & Swinker, 2001).

To investigate the dimensions of product quality in the retailing clothing industry in Ireland the Garvin Eight Dimensions of Product quality was adopted. The validity and reliability of the scale were estimated by providing the reliability data analysis (Table 5.6) and checking the Cronbach’s Alpha values for the scale and separately for each dimension of product quality. The reliability coefficient for the Garvin’s scale is 0.914 which is at over 0.8 which means that the scale is reliable (Bryman, et al. 2009).

The garments dimensions factor analysis was conducted in the same way as for service quality, which means by factor extraction using varimax rotation. As a result of analysis the dimensions were grouped into three factors: Aesthetics, Reliability and Performance. One item has been removed completely from the further research garments serviceability 1 (GARMSERV1) because of the value lower that 0.5 which means that the item was not reliable (Field, 2005).

Regression analysis that was taken to determine which factors are the most important when evaluating the quality of garments has shown that aesthetics, with its highest value t and lowest significance (t (3.500), Sig.001) is the best predictor of customer satisfaction with garments quality. This can be due to the fact that majority of participants were found to be female (69 per cent) and they are generally follow fashion and trends more than males.

Good reputation of garments, consistent description on the labels as well as stylish, modern looking garments of high quality seem to be the most important factors of satisfaction for ZARA customers.

Summarizing it is clear and appropriate to state that the higher the quality of the ZARA products the higher the customers satisfaction with ZARA in general.
3. To measure and describe the overall customer satisfaction with ZARA services and products in Ireland.

In order to reach the answer to that objective the analysis on the second last question was adopted. Respondents were asked to assess their overall satisfaction by marking the score in the scale of 1 to 5.

Data gained from analysing the statistical mean of overall satisfaction shows the average satisfaction in the scale of 1 to 5 is 4.10, which is fairly high. The general level of customers’ satisfaction at ZARA is very good but can still be improved. Satisfaction level is very significant since it determines whether the customer is just satisfied or may even become the apostle of the brand (Heskett et al., 1997).

When it comes to the influence of both gender and nationality on overall satisfaction, it was found that these factors decide only marginally. Females’ customers are only slightly more satisfied than males; females average satisfaction level is 4.14 whereas males’ satisfaction is equal to 4.00. Also nationality affects satisfaction only slightly. The data obtained shows that Irish customers are satisfied at the level of 4.13 whereas non-Irish are satisfied at the level of 4.03 in the scale of 1 to 5.
5.3 Recommendations

Quality is being considered by many as one of management’s top-most competitive priorities and a prerequisite for sustenance and growth. The quest for quality improvement has become a highly desired objective in today’s intensely competitive global market-place (Sureshchandaret al.2010). Tsiotsou, (2006) found a positive direct effect of perceived quality on purchase intentions. Perceived product quality seems to play an important role in both customer satisfaction and purchase intentions.

All sets of data analysis conducted during this research bring a view on how to plan marketing strategies when targeting the ZARA audience. After running the data analysis it became clear to the author that aspects as age or nationality are not as significant to customer satisfaction. One of the implications for ZARA management is to review the company SWOT analysis with the special emphasis on the company strengths and weaknesses. They should try to ameliorate their strengths while improving and minimizing their weaknesses.

It would be suggested by the author of this study that more focus is in place on the male gender since the level of satisfaction slightly drags the average satisfaction down. This could be achieved through many strategies to be identified by a separate research that would need to take place in order to analyse the reasons why males are less satisfied. The author would suggest such research and act on the findings. The retailer should also focus on the high and low scored determinants of both service and product quality. Thus, critical factors of customer satisfaction with ZARA service quality are serviceability and understanding while less important for the customer proved to be security and courtesy. ZARA do not provide any additional services to customers.
In order to further increase customer satisfaction the researcher thinks that proper additional services for example tailoring service would improve overall shopping experience.

Findings of this research suggest that understanding/ knowing the customer is the second most important determinant of ZARA customers ‘satisfaction. Customers appreciate employees that are never too busy to respond to their queries, provide appropriate explanation on garments, and when their needs are recognized. Therefore, resources should be allocated to train employees, so they can feel more professional and confident while dealing with customers.

The tangibles like stores atmosphere and décor, employees’ uniform appear to be also important for customers. Management of ZARA should focus on clean, modern looking arrangements and interior that should reflect the image of the brand.

Since the research was also assessing customer satisfaction with product quality, ZARA garments dimensions were evaluated. The dimension of greatest importance is aesthetic. It is extremely important for ZARA’s customers that the garments are stylish and of original design, also the fabric line and the details are meeting their standards. The designers and manufacturers should concentrate on running out of trends and always astonish their customers.

5.4 Limitations and recommendations for further research

Due to time and resource constraints, it was possible to target only 100 people to participate in the survey, which limited the generalisation of the result. Therefore, it is recommended to the future study that more participants are appreciated in a survey like this.
Furthermore, comparative studies might be conducted to assess customer satisfaction in ZARA stores Ireland vs. ZARA stores in United Kingdom or comparing the gap between perceived and received level of customer satisfaction.

The study was to measure how satisfied customers are with regards to ZARA and the quantitative research has been adopted. It is recommended for the future study to adopt a qualitative approach to understand better the consumer’s attitudes and experiences.
6. Reflections on learning

My personal thesis sentence:

Success consists of going from failure to failure without loss of enthusiasm.

(Winston Churchill)

These words are of great importance to me; to me they mean that one can learn from failure if one doesn’t give up. The key being not giving up!

The whole dissertation process has been very important for me, especially when it came to developing my independent working skills. It was, however, challenging at times. In the beginning, I thought that everything would be straightforward and that I would be able to manage my own time, but it was quiet hard juggling between full-time work, part-time College and a “personal life”. In order to prioritise the dissertation, I started my work on it from the onset of second semester of second year.

Learning Style

Rita and Kenneth Dunn describe Learning Styles as the way in which each learner begins to concentrate process and retain new difficult information. Kolb (1984) suggests that the leaning is a circular process and it happens in four stages in a learning cycle. These four phases of the learning process are: feeling and sensing, watching, thinking, doing (Kolb, 1984). Referring to the Kolb’s Learning Cycle the researcher considers herself as a theorist that like to learn using abstract conceptualization and reflective observation (Adults Learning Styles, 2008). This thesis process as well as Master Program gave the researcher chance to focus more on ideas and abstract concept.
January 2013

I started to think about the potential thesis topic from December 2012 and wanted to make my topic of the dissertation relevant to aspects of my personal interests, thus find a topic that I would enjoy. The areas of the Services Marketing, Project Management, as well as Consumer Behaviour were of interest to me, so I decided look at the concepts of satisfaction/loyalty as the foundation of my potential thesis topic. After the initial research my interests were formed around Zara Ireland, which is a well known company both worldwide and in the Irish market.

The title that I chose was a follows:

Quality of service and product as the main factors influencing customers’ satisfaction in the clothing retailing industry in Ireland- case study of Zara Plc.

On the first meeting the tutor introduced the plan of the module for the Research Project and distributed the forms to complete- Idea Generation Sheets. After receiving the positive feedback for the topic of my interest I have decided to start my works on the proposal project straight away. The thesis proposal feedback brought to my attention some valuable comments/concerns. Dr Gross appreciated the positive aspects of my work, but also noticed that the rationales, structure and methodology weren’t as clear as it could be in other words that I would need to frame the project so that ends up being something that can be measured/quantified or evaluated in some way. A more in-depth structure would also be required.

The valuable thing I learnt from this instance was that it is really very important to show your contribution in terms of questioning and answering everything from the very beginning. I felt the comments received from Dr Gross reinforced me to work hard and improve few aspects of my work.
If I had to do it again I would probably have put more effort and research into the area/topic I want to explore with the special emphasis on past researches and the results of these studies. This was an important thing to learn and something I will take with me for the future, as it will save valuable time and effort.

After receiving the formal confirmation from the College that I have completed all modules and I was granted a supervisor I decided to contact Ms Lolich the very same day to arrange the first meeting. This proved to be great help. Ms Lolich approved the title of my topic, gave me some tips in relation to the questionnaire and academic sources I might find useful while formulating my objectives.

The title of the thesis covers the area which I personally have a general interest in, it is also an area that can be measured easily thus the thought of researching and outlining the thesis became less of a task.

I set personal deadlines that helped me to complete particular sections of the thesis. I had four face to face meetings with my supervisor, each time coming away with a distinctive plan of what I hoped to achieve and the steps necessary to ensure that this happened. According to the principles of cognitive learning, the goals and expectations, which created imbalance, and tension motivated me to act. The reward (award of a Master’s degree) was not the most important at the time and not influenced this learning process (McShane et al. 2006). This process helped me to achieve smaller goals. As a result I personally have learned to be organised, self-disciplined, and become better at time management. These are skills which I can confidently take with me in future projects I undertake as well a potential future employment.

It was at times quite difficult and sometimes frustrating working on this task namely in the beginning, as I was not sure if the direction which I am taking was the right one.
In developing my dissertation I firstly started to review again the questionnaire and Literature Review Chapter as well as spent some time on reformulating the Research Objectives.

I concentrated also on the project framework and the factors that may influence customer satisfaction from both service quality and product quality. Trying to find a framework for this thesis, I firstly started to search on the DBS databases (mainly: The Academic Search Premier and The Emerald) and articles related to customer satisfaction. In the beginning I was happy with the Kano’s model of customer satisfaction (Theory of attractive quality), which I came across in the article by Kano (1984) “Attractive quality and must-be quality”, *The Journal of the Japanese Society for Quality Control*.

Figure 6.1 Kano model

![Kano Model Diagram](image)

Source: Kano, 1984

As well as after reviewing my framework, I started to think whether the factors that I want to explore in ZARA are shown in the chosen graph.
I had some serious concerns as in my opinion the model was missing some important factors that would have been crucial for measuring the product quality. I was happy with the chosen framework, however after thinking about it more I realized some important elements were missing. After the discussion with my supervisor, I decided to search for another framework that would help me to concentrate on different dimensions of product in the type of retail establishment.

I researched a variety of sources such as industry journals and key texts. This at first felt overwhelming. I asked the library staff for support in accessing the information I required. I learnt that asking for help is a good thing.

Finally, I found a framework in the Marketing Journal by Garvin (1984) 'What Does "Product Quality" Really Mean?', Sloan Management Review. As I now had my base, I proceeded ahead with obtaining information around this. Primarily, I focused on the dimensions of product quality (antecedents) that influence the customer satisfaction.

I had to also take into account the second framework for my thesis that concerned service quality. I had to disregard information that I felt at the time that were not relevant to my topic. Also as I found this content to be vague, and the ideas I felt didn’t always follow logic.

I started my part of the literature review from exploring the antecedents of customer satisfaction, moving toward determinants of service quality, SERVQUAL, differences between goods and services, Garvin’s Eight Dimensions of Product Quality. The last part of this section was to find the relevant literature that shows the relationship between product quality and satisfaction.

July 2013

After the Introduction Chapter I started to think about the method which can help me collect the necessary information.
I prefer to work with the numbers so from the beginning I wanted to work with the statistics and decided to choose the quantitative rather than qualitative type of the survey. I found a valid survey, the bases for my questionnaire questions. I decided to formulate my questions based on SERVQUAL with determinants of service quality and Garvin’s Eight Dimensions of Quality as a base for garments survey. The questionnaires were distributed among my friends, co-workers using snow-bowling sampling method and using https://www.esurveycreator.com.

The surveys have been distributed over a week period of 3rd of July 2013. The collection of questionnaires lasted more than 2 weeks. I distributed over 100 questionnaires which were floated among the general public within the city of Dublin. The e-mail with the link for the questionnaires was sent among my work colleagues and asked them to fill the questionnaire in if they are ZARA customers. Survey was targeted to the customers of ZARA services and products.

Data obtained in this regard was entered into the system and analysed through SPSS 15.0, starting from the Saturday, 20th July.

After all data obtained from my surveys was entered to SPSS 15.0 I could start to analyse it. It was quite difficult at the time to analyse the statistical data; there was a time that I was very confused as I was not sure if I fully understood the system. This experience really helped me develop my analytical skills and search the answers for my questions.

I personally have learned from this process that it is very important to trust you and believe that we are able to work and manage our time properly.

During this time I was also working on improving the individual sections of the dissertation as well as combining these sections together. Then I started to think about the conclusion and recommendations chapter.
Moving through the research process helped me to comment on formulated research objectives.

I also learned to appreciate the feedback that might have very powerful effect. The feedbacks that I received from my supervisor caused me to continue to think more about my topic and resulted in additional thinking.

August

After the Conclusion/Introduction chapters were completed, I began to concentrate on the graphical aspect of my thesis like formatting, graphs, tables, etc. Going from past experiences I have learnt this part is very important and should be given necessary time to review. Once again, time management, and the evaluation of the time is what is needed, and this is for sure one of the lessons I have been taught.

The dissertation process has been very important for me personally. First of all I have developed my independent learning skills.

I also strongly believe that this experience has improved my confidence in my ability, I feel it was a great conclusion for the two years I spent in College, I am now really excited and well-motivated for the tasks that lie ahead.

I am truly happy with the final outcome of this thesis, but I do appreciate even more the lessons I have been taught and the feelings that accompanied with the creation and completion of this process, from turning nothing into something valuable. It has shown me that you can get wherever you want if you are working hard enough and you believe in your dreams. It is my personal achievement and that is supporting my personal thesis sentence which I have mentioned at the beginning of my personal journal.

I am very proud of where I am now and what I have done over the past two years. Time has really flown by; it was not always easy to manage everything and to make everything work but I believe it was worth it! And I would do it again in a heartbeat!
Bibliography

Billington, C & Nie, W (2009), The Customer Value proposition should drive supply chain design: an example in mass retailing, Perspectives for Managers.

Capell, K (2008), ZARA thrives by breaking all the rules, *BusinessWeek (October, 20th)*

GrupoInditex press Annual, 2012, available from:

Hume, M (2011), The secrets of ZARA's success, Available online:

Kelemen, M.L (2003), *Managing Quality*, University of Keele, Sage Publications Ltd.

Koskennurmi-Sivonen, R, Pietarila, P (2009), Quality Clothes – An Outline of a Model for Assessing the Quality of Customized Clothing, *Nordes 1*.

Rust, R T and Oliver, R L (1994) *Service quality insights and managerial implications from the frontier*, in Rust, R T and Oliver, R L, *Service Quality New Directions in Theory and Practice*, Sage, CA

Sower, V, & Fair, F (2005), 'There is More to Quality than Continuous Improvement: Listening to Plato', *Quality Management Journal*, 12, 1, pp. 8-20, Business Source Complete, EBSCOhost, viewed 9 June 2013.

Central Statistic Office

http://www.cso.ie/Quicktables/GetQuickTables.aspx?FileName=CNA15.asp&TableName=Population+by+Age+2011&StatisticalProduct=DB_CN

Population classified by Religion and Nationality 2011

http://www.cso.ie/en/media/csoie/census/documents/census2011profile6/Profile,6,Migration,and,Diversity,Tables,and,Appendices.pdf
Appendices

Appendix A- Individual Customer Satisfaction, Loyalty & Behaviour

Jones and Sasser (1995) argue that it is important to understand satisfaction and loyalty of customers as a group, but it is equally critical to understand the attitudes of individual customers. The authors think that the customers behave in one of four basic ways: as loyalists, as defectors, as mercenaries, or as hostages (table below).

The loyalist is a customer who is completely satisfied and keeps returning to the company. Within the loyalists are customers that are extremely satisfied and whose experience so far exceeds their expectations, that they may become apostles and a brand/product ambassadors (Heskett et al., 1994, 1997).

Jones et al. (1995) think that defectors’ ranks include those customers who are more than dissatisfied, quite dissatisfied, and neutral. The merely satisfied customers may defect too, similarly to once highly satisfied customers who have encountered failures. The most dissatisfied defectors can easily become the terrorists, spreading the negative word of mouth through (Jones et al., 1995; Heskett et al., 1994, 1997). Because the terrorist are more committed, they are also more effective at telling their stories than apostles (Jones et al., 1995).

Another type of customer is the mercenary who may be very satisfied with the product/service but show no interest in becoming loyal to the company. This type of customer chase low prices, follow fashion or just like changes, and are often expensive to acquire and quick to depart. Hostages as per Jones et al. (1995) are individuals that experience the worst the company has to offer and must accept it. The companies that operate in a monopolistic environment see little reason to respond to hostages, as these customers cannot go anywhere.
These customers however, may take every possible opportunity to complain, and can easily become *terrorists* (Jones et al., 1995).

Table Individual Customer Satisfaction, Loyalty, and Behaviour

<table>
<thead>
<tr>
<th></th>
<th>Satisfaction</th>
<th>Loyalty</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loyalist/ Apostle</td>
<td>High</td>
<td>High</td>
<td>Staying and supportive</td>
</tr>
<tr>
<td>Defector</td>
<td>Low to medium</td>
<td>Low to medium</td>
<td>Leaving or having left unhappy</td>
</tr>
<tr>
<td>Mercenary</td>
<td>High</td>
<td>Low to medium</td>
<td>Coming and going; low commitment</td>
</tr>
<tr>
<td>Hostage</td>
<td>Low to medium</td>
<td>High</td>
<td>Unable to switch; trapped</td>
</tr>
</tbody>
</table>

Source: Jones and Sasser (1995)
Appendix B-Goods vs. Services- comparison table

Table Goods versus Services

<table>
<thead>
<tr>
<th>Goods</th>
<th>Services</th>
<th>Resulting implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangible</td>
<td>Intangible</td>
<td>Service cannot be inventoried. Services cannot be easily patented. Services cannot be readily displayed or communicated. Pricing is difficult.</td>
</tr>
<tr>
<td>Standardized</td>
<td>Heterogeneous</td>
<td>Service delivery and customer satisfaction depend on employee and customer actions. Service quality depends on many uncomfortable factors. There is no sure knowledge that the service delivered matches what was planned and promoted.</td>
</tr>
<tr>
<td>Separable</td>
<td>Inseparability</td>
<td>Customers participate in and effect the transaction, Customers affect each other. Employees affect the service outcome. Decentralization may be essential. Mass production is difficult.</td>
</tr>
<tr>
<td>Non-perishable</td>
<td>Perishable</td>
<td>It is difficult to synchronize supply and demand with services. Services cannot be returned or resold.</td>
</tr>
</tbody>
</table>

Source: Parasuraman, Zeithaml, Berry (1985) in Zeithaml, Bitner, Gremler (2009, p.20)
Appendix C- Determinants of Service Quality

Table Determinants of Service Quality

<table>
<thead>
<tr>
<th>Determinants of Service Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELIABILITY involves consistency of performance and dependability. It means that the firm performs the service right the first time. It also means that the firm honours its promises. Specifically, it involves:</td>
</tr>
<tr>
<td>- accuracy in billing;</td>
</tr>
<tr>
<td>- keeping records correctly;</td>
</tr>
<tr>
<td>- performing the service at the designated time.</td>
</tr>
<tr>
<td>RESPONSIVENESS concerns the willingness or readiness of employees to provide service. It involves timeliness of service:</td>
</tr>
<tr>
<td>- mailing a transaction slip immediately;</td>
</tr>
<tr>
<td>- calling the customer back quickly;</td>
</tr>
<tr>
<td>- giving prompt service (e.g., setting up appointments quickly).</td>
</tr>
<tr>
<td>COMPETENCE means possession of the required skills and knowledge to perform the service it involves:</td>
</tr>
<tr>
<td>- knowledge and skill of operational support personnel;</td>
</tr>
<tr>
<td>- research capability of the organization, e.g., securities brokerage firm.</td>
</tr>
<tr>
<td>ACCESS involves approachability and ease of contact. It means:</td>
</tr>
<tr>
<td>- the service is easily accessible by telephone (lines are not busy, and they don’t put you on hold);</td>
</tr>
<tr>
<td>- waiting time to receive service (e.g., at a bank) is not extensive;</td>
</tr>
<tr>
<td>- convenient location of service facility.</td>
</tr>
<tr>
<td>COURTESY involves politeness, respect, consideration, and friendliness of contact personnel (including receptionists, telephone operators, etc.) It includes:</td>
</tr>
<tr>
<td>- consideration for the consumer’s property (e.g., no muddy shoes on the carpet);</td>
</tr>
<tr>
<td>- clean and neat appearance of public contact personnel.</td>
</tr>
<tr>
<td>COMMUNICATION means keeping customers informed in language they can understand and listening to them. It may mean that the company has to adjust its language for different consumers-increasing the level of sophistication with a well-educated customer and speaking simply and plainly with a novice. It involves:</td>
</tr>
<tr>
<td>- Explaining the service itself;</td>
</tr>
<tr>
<td>- Explaining how much the service cost;</td>
</tr>
<tr>
<td>- Explaining the trade-offs between service and cost;</td>
</tr>
<tr>
<td>- Assuring the consumer that a problem will be handled.</td>
</tr>
<tr>
<td>CREDIBILITY involves trustworthiness, believability, honesty. It involves having the customer’s best interest at heart. Contributing to credibility are:</td>
</tr>
<tr>
<td>- company name;</td>
</tr>
<tr>
<td>- company reputation;</td>
</tr>
</tbody>
</table>
- personal characteristics of the contact personnel;
- the degree of hard sell involved in interactions with the customer.

<table>
<thead>
<tr>
<th>SECURITY is the freedom from danger, risk, or doubt. It involves:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- physical safety;</td>
</tr>
<tr>
<td>- financial security;</td>
</tr>
<tr>
<td>- confidentiality.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDERSTANDING/ KNOWING THE CUSTOMER involves making the effort to understand the customer’s needs. It involves:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- learning the customer’s specific requirements;</td>
</tr>
<tr>
<td>- providing individualized attention;</td>
</tr>
<tr>
<td>- recognizing the regular customer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TANGIBLES include the physical evidence of the service, physical facilities;</th>
</tr>
</thead>
<tbody>
<tr>
<td>- appearance of personnel;</td>
</tr>
<tr>
<td>- tools or equipment used to provide the service;</td>
</tr>
<tr>
<td>- physical representations of the service, such as a plastic credit card or a bank statement;</td>
</tr>
<tr>
<td>- other customers in the service facility.</td>
</tr>
</tbody>
</table>

Source: Parasuraman, Zeithaml and Berry (1985)
Appendix D- E-mail sent to respondents

Re: You are invited to a research survey – *(Quality of service and product as the main factors influencing customers’ satisfaction in the clothing retailing industry in Ireland- case study of ZARA).*

Hi All,

As part of my Master Thesis, I am conducting a survey to investigate the factors that may have an impact on customer satisfaction with the ZARA services and garments. I am looking for as many responses as possible by Friday July, 19th so please forward this link to any of your friends, who may be familiar with the company and ask them to complete this survey.

To take the survey online, please go to the link below, and then follow the online survey instructions.

https://www.esurveycreator.com/s/9dbc3aa

Your input is very important to me and will be kept strictly confidential (used only for the purposes of research for this project). I estimate that it will take you approximately 15-20 minutes to complete the survey.

If you have any questions or would prefer to complete a paper survey please email me at justyna.jaskulska@hotmail.com.

Thank you in advance for your participation.

Thank you,
Kind Regards
JustynaJaskulska
Appendix E- Draft version of Survey

SURVEY ON CUSTOMERS SATISFACTION AT ZARA

Dear Participant,

I am currently working on my Master Thesis at the Dublin Business School. The aim of this research is to investigate the factors that may have an impact on your satisfaction with the ZARA services and garments.

I would appreciate if you could, by taking few minutes, tell me about your experience with ZARA Plc.

Thank you very much for your time and support!

JustynaJaskulska

Dublin Business School
MBA
I. PERSONAL INFORMATION

Gender
☐ Female ☐ Male

Your age
☐ 18-24 ☐ 25-33 ☐ 34-42 ☐ 43-50
☐ 51 and above

Your nationality?
☐ Irish ☐ Other: __________(please specify)

How long have you lived in Ireland?
☐ <1yr ☐ 2yrs ☐ 3yrs ☐ 4yrs ☐ 5yrs
☐ >6 yrs

II. CUSTOMER INFORMATION

Are you a ZARA customer?
☐ Yes ☐ No*

*please note: if you are not a ZARA customer, please do not continue with this questionnaire

How long have you been using the ZARA garments?
☐ <1 month ☐ 2-6 months ☐ 7 to 11 months ☐ 1-3 years ☐ >3 years

When was your last visit in ZARA?
☐ this month ☐ last month ☐ 2 months ago
☐ 3 months ago or more
For each statement please show the extent to which you believe the ZARA has the feature described by the statement. Circling 1 means you strongly disagree with the statement and circling 5 means that you strongly agree with the statement. Please circle only one box. Please note there is no right and wrong answer.

III. YOUR SATISFACTION WITH ZARA SERVICES

Part 1

RELIABILITY

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

The billing is always accurate.

Part 2

RESPONSIVENESS

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

ZARA employees are always willing and ready to provide service (i.e. checking the sizes in the stock room)

Employees are never too busy to respond to your request.

The waiting time outside fitting room is generally acceptable for customers

The waiting time taken at the billing counter is generally acceptable for customers
Part 3

COURTESY

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZARA personnel always look professional.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ZARA employees are consistently courteous with customers.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Part 4

COMMUNICATION

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZARA personnel provide appropriate explanation on garments.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Part 5

CREDIBILITY

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZARA performs its service right the first time.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>When you have a problem ZARA shows a sincere interest in solving it.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ZARA is known for keeping its promises (i.e. exchange or full refund).</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Part 6

SECURITY

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>You feel safe in your transactions with ZARA (i.e. payment security)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>You feel safe shopping at ZARA.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Part 7

UNDERSTANDING/KNOWING THE CUSTOMER

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ZARA has employees who provide you individual attention.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>The behaviour of ZARA employees instill confidence in customers.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ZARA employees have the knowledge to answer customers’ enquiries.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ZARA employees understand the specific needs of their customers.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Part 8

TANGIBLES

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZARA stores atmosphere and decor are appealing.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ZARA employees’ uniforms appear neat.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Materials associated with the service (such as pamphlets with promotions) are visually appealing.

<table>
<thead>
<tr>
<th>IV. YOUR SATISFACTION WITH ZARA GARMENTS</th>
</tr>
</thead>
</table>

Part 1

PERFORMANCE

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZARA provide a variety of sizes.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ZARA garments are comfortable.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ZARA garments are ‘easy care’ (i.e. washing, ironing)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Part 2

FEATURES

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zara garments fit well</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Part 3

RELIABILITY

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZARA garments wear well within a specific period of time</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Part 4
CONFORMANCE

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

The ZARA branded garments are of good reputation.

The description of ZARA garments is consistent with the actual product (i.e. fabric, colour).

Part 5
DURABILITY

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

ZARA garments are durable (considering material, structural and stylistic durability)

Part 6
SERVICEABILITY

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

ZARA garments have clear care labels and guarantees.

Part 7
AESTHETIC

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

ZARA garments are stylish

ZARA garments look modern and are of original design.

ZARA garments fabric line/details (sewing and finishing methods) are of high quality.
Part 8

PERCEIVED QUALITY

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZARA brands garments are of high quality.</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>ZARA garments are good value for money.</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
</tbody>
</table>

V. CUSTOMER SATISFACTION

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall, you are very much satisfied with shopping in ZARA?</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>You are very much likely to shop in ZARA in the next months.</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
</tbody>
</table>

Thank you very much for answering this questionnaire!
APPENDIX F- SPSS Data

FREQUENCIES

Gender

Statistics

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Valid</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>31</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>FEMALE</td>
<td>69</td>
<td>69.0</td>
<td>69.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Age

Statistics

<table>
<thead>
<tr>
<th>Age</th>
<th>N</th>
<th>Valid</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>4</td>
<td>4.0</td>
<td>.00</td>
<td>4.00</td>
<td>1.360</td>
<td>.73195</td>
</tr>
<tr>
<td>25-33</td>
<td>65</td>
<td>65.0</td>
<td>.00</td>
<td>4.00</td>
<td>1.360</td>
<td>.73195</td>
</tr>
<tr>
<td>34-42</td>
<td>24</td>
<td>24.0</td>
<td>.00</td>
<td>4.00</td>
<td>1.360</td>
<td>.73195</td>
</tr>
<tr>
<td>43-50</td>
<td>5</td>
<td>5.0</td>
<td>.00</td>
<td>4.00</td>
<td>1.360</td>
<td>.73195</td>
</tr>
<tr>
<td>>51</td>
<td>2</td>
<td>2.0</td>
<td>.00</td>
<td>4.00</td>
<td>1.360</td>
<td>.73195</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>1.360</td>
<td>.73195</td>
</tr>
</tbody>
</table>

Nationality

Statistics

<table>
<thead>
<tr>
<th>Nationality</th>
<th>N</th>
<th>Valid</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Mean \(\mu \) = .6900
Nationality

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-IRISH</td>
<td>31</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>IRISH</td>
<td>69</td>
<td>69.0</td>
<td>69.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Statistics

ResiDuration

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Valid</th>
<th>Missing</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td>0</td>
<td>4.8100</td>
</tr>
</tbody>
</table>

ResiDuration

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1yr</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2yrs</td>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4yrs</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5yrs</td>
<td>4</td>
<td>4.0</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>>6yrs</td>
<td>92</td>
<td>92.0</td>
<td>92.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Descriptives

Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResiDuration</td>
<td>100</td>
<td>.00</td>
<td>5.00</td>
<td>4.8100</td>
<td>.78746</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistics

CustDuration

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Valid</th>
<th>Missing</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td>0</td>
<td>3.6600</td>
</tr>
</tbody>
</table>

CustDuration

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-6 months</td>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>7-11 months</td>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1-3 yrs</td>
<td>24</td>
<td>24.0</td>
<td>24.0</td>
<td>28.0</td>
</tr>
<tr>
<td>>3 yrs</td>
<td>72</td>
<td>72.0</td>
<td>72.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Descriptive Statistics

<table>
<thead>
<tr>
<th>ResiDuration</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid N (listwise)</td>
<td>100</td>
<td>.00</td>
<td>5.00</td>
<td>4.8100</td>
<td>.78746</td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>LastVisit</th>
<th>N</th>
<th>Valid</th>
<th>Missing</th>
<th>Mean</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LastVisit

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>21</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>last month</td>
<td>18</td>
<td>18.0</td>
<td>18.0</td>
<td>39.0</td>
</tr>
<tr>
<td>2 months ago</td>
<td>20</td>
<td>20.0</td>
<td>20.0</td>
<td>59.0</td>
</tr>
<tr>
<td>3 months ago or more</td>
<td>41</td>
<td>41.0</td>
<td>41.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Descriptive Statistics

<table>
<thead>
<tr>
<th>LastVisit</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid N (listwise)</td>
<td>100</td>
<td>.00</td>
<td>3.00</td>
<td>1.8100</td>
<td>1.18658</td>
</tr>
</tbody>
</table>

Gender

<table>
<thead>
<tr>
<th>Stat</th>
<th>Mi.</th>
<th>Max.</th>
<th>Sum</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Std. Error</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>100</td>
<td>.00</td>
<td>1.00</td>
<td>69.00</td>
<td>.6900</td>
<td>.46482</td>
<td>-.834</td>
<td>.241</td>
<td>-1.331</td>
</tr>
<tr>
<td>Age</td>
<td>100</td>
<td>.00</td>
<td>4.00</td>
<td>136.00</td>
<td>1.3600</td>
<td>.73195</td>
<td>1.368</td>
<td>.241</td>
<td>2.595</td>
</tr>
<tr>
<td>Nationality</td>
<td>100</td>
<td>.00</td>
<td>1.00</td>
<td>69.00</td>
<td>.6900</td>
<td>.46482</td>
<td>-.834</td>
<td>.241</td>
<td>-1.331</td>
</tr>
<tr>
<td>ResiDuration</td>
<td>100</td>
<td>.00</td>
<td>5.00</td>
<td>481.00</td>
<td>4.8100</td>
<td>.78746</td>
<td>-4.841</td>
<td>.241</td>
<td>23.960</td>
</tr>
<tr>
<td>ZARACust</td>
<td>100</td>
<td>1.00</td>
<td>1.00</td>
<td>100.00</td>
<td>1.0000</td>
<td>.00000</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>CustDuration</td>
<td>100</td>
<td>1.00</td>
<td>4.00</td>
<td>366.00</td>
<td>3.6600</td>
<td>.62312</td>
<td>-2.167</td>
<td>.241</td>
<td>5.508</td>
</tr>
<tr>
<td>LastVisit</td>
<td>100</td>
<td>.00</td>
<td>3.00</td>
<td>181.00</td>
<td>1.8100</td>
<td>1.18658</td>
<td>-.400</td>
<td>.241</td>
<td>-1.386</td>
</tr>
<tr>
<td>ServREL1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>438.00</td>
<td>4.3800</td>
<td>.70754</td>
<td>-1.047</td>
<td>.241</td>
<td>1.090</td>
</tr>
<tr>
<td>ServRES1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>406.00</td>
<td>4.0600</td>
<td>.73608</td>
<td>-.560</td>
<td>.241</td>
<td>.345</td>
</tr>
<tr>
<td>ServRES2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>378.00</td>
<td>3.7800</td>
<td>.77303</td>
<td>-.533</td>
<td>.241</td>
<td>.200</td>
</tr>
<tr>
<td>ServRES3</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>371.00</td>
<td>3.7100</td>
<td>.82014</td>
<td>-1.320</td>
<td>.241</td>
<td>2.476</td>
</tr>
<tr>
<td>ServRES4</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>381.00</td>
<td>3.8100</td>
<td>.66203</td>
<td>-1.051</td>
<td>.241</td>
<td>3.108</td>
</tr>
<tr>
<td>ServCOURT 1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>418.00</td>
<td>4.1800</td>
<td>.57525</td>
<td>-.340</td>
<td>.241</td>
<td>1.420</td>
</tr>
<tr>
<td>ServCOURT 2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>404.00</td>
<td>4.0400</td>
<td>.65010</td>
<td>-.489</td>
<td>.241</td>
<td>.974</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>355.00</td>
<td>3.5500</td>
<td>.72995</td>
<td>-.813</td>
<td>.241</td>
<td>.899</td>
</tr>
</tbody>
</table>
Descriptive Statistics

<table>
<thead>
<tr>
<th>Measure</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.3800</td>
<td>.70754</td>
</tr>
<tr>
<td>ServRES1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.0600</td>
<td>.73608</td>
</tr>
<tr>
<td>ServRES2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>3.7800</td>
<td>.77303</td>
</tr>
<tr>
<td>ServRES3</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>3.7100</td>
<td>.82014</td>
</tr>
<tr>
<td>ServRES4</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>3.8100</td>
<td>.66203</td>
</tr>
<tr>
<td>ServCOURT1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.1800</td>
<td>.57525</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.0400</td>
<td>.65010</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>3.5500</td>
<td>.72995</td>
</tr>
<tr>
<td>ServCRED1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.2200</td>
<td>.61266</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>3.8300</td>
<td>.66750</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.1100</td>
<td>.76403</td>
</tr>
<tr>
<td>ServSEC1</td>
<td>100</td>
<td>3.00</td>
<td>5.00</td>
<td>4.4100</td>
<td>.51434</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>100</td>
<td>3.00</td>
<td>5.00</td>
<td>4.4100</td>
<td>.41900</td>
</tr>
<tr>
<td>ServUNDER1</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>3.5400</td>
<td>.51434</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>3.9100</td>
<td>.53362</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.4100</td>
<td>.61266</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.4100</td>
<td>.51434</td>
</tr>
<tr>
<td>ServTANG1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.3800</td>
<td>.70754</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.0600</td>
<td>.73608</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>3.7800</td>
<td>.77303</td>
</tr>
<tr>
<td>ServCRED</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.1800</td>
<td>.57525</td>
</tr>
<tr>
<td>ServSEC</td>
<td>100</td>
<td>3.00</td>
<td>5.00</td>
<td>4.4100</td>
<td>.51434</td>
</tr>
<tr>
<td>ServUNDER</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>3.9100</td>
<td>.53362</td>
</tr>
</tbody>
</table>

Valid N (listwise) 100
Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.0000</td>
<td>.61955</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>100</td>
<td>3.00</td>
<td>5.00</td>
<td>4.2200</td>
<td>.46232</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>4.0100</td>
<td>.70345</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.1000</td>
<td>.67420</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>100</td>
<td>1.00</td>
<td>5.00</td>
<td>4.0900</td>
<td>.62109</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>100</td>
<td>3.00</td>
<td>5.00</td>
<td>4.1400</td>
<td>.51286</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>100</td>
<td>3.00</td>
<td>5.00</td>
<td>4.0700</td>
<td>.51747</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.0000</td>
<td>.66667</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>100</td>
<td>3.00</td>
<td>5.00</td>
<td>4.0800</td>
<td>.52570</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>100</td>
<td>3.00</td>
<td>5.00</td>
<td>4.3400</td>
<td>.49686</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>4.2500</td>
<td>.57516</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>3.9400</td>
<td>.69369</td>
</tr>
<tr>
<td>GarmPERCQ1</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>3.9000</td>
<td>.68902</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>100</td>
<td>2.00</td>
<td>5.00</td>
<td>3.9200</td>
<td>.69165</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group Statistics

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTSAT1 MALE</td>
<td>31</td>
<td>4.0000</td>
<td>.68313</td>
</tr>
<tr>
<td>FEMALE</td>
<td>69</td>
<td>4.1449</td>
<td>.49335</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th>CUST SAT1</th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Equal variances</td>
<td>.821</td>
<td>.367</td>
<td>-1.200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.542</td>
<td>.463</td>
<td>-.810</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>-.674</td>
<td>40.013</td>
<td>.504</td>
</tr>
</tbody>
</table>

Group Statistics

<table>
<thead>
<tr>
<th>Nationality</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTSAT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-IRISH</td>
<td>31</td>
<td>4.0323</td>
<td>.75206</td>
<td>.13507</td>
</tr>
<tr>
<td>IRISH</td>
<td>69</td>
<td>4.1304</td>
<td>.45092</td>
<td>.05428</td>
</tr>
</tbody>
</table>

Independent Samples Test

- Levene's Test for Equality of Variances
- t-test for Equality of Means

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases Valid</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded(a)</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a) Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.923</td>
<td>.924</td>
<td>20</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>74.8300</td>
<td>71.860</td>
<td>.373</td>
<td>.924</td>
</tr>
<tr>
<td>ServRES1</td>
<td>75.1500</td>
<td>67.624</td>
<td>.716</td>
<td>.917</td>
</tr>
</tbody>
</table>
Summary Item Statistics

<table>
<thead>
<tr>
<th>Item Means</th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Range</th>
<th>Maximum / Minimum</th>
<th>Variance</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Variances</td>
<td>.472</td>
<td>.265</td>
<td>.673</td>
<td>.408</td>
<td>2.543</td>
<td>.013</td>
<td>20</td>
</tr>
<tr>
<td>Inter-Item Correlations</td>
<td>.377</td>
<td>-.027</td>
<td>.964</td>
<td>.990</td>
<td>-36.263</td>
<td>.026</td>
<td>20</td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases Valid</td>
<td>100</td>
</tr>
<tr>
<td>Excluded((a))</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

\(a\) Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.780</td>
<td>.782</td>
<td>4</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServRES1</td>
<td>4.0600</td>
<td>.73608</td>
<td>100</td>
</tr>
<tr>
<td>ServRES2</td>
<td>3.7800</td>
<td>.77303</td>
<td>100</td>
</tr>
<tr>
<td>ServRES3</td>
<td>3.7100</td>
<td>.82014</td>
<td>100</td>
</tr>
<tr>
<td>ServRES4</td>
<td>3.8100</td>
<td>.66203</td>
<td>100</td>
</tr>
</tbody>
</table>
Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>ServRES1</th>
<th>ServRES2</th>
<th>ServRES3</th>
<th>ServRES4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServRES1</td>
<td>1.000</td>
<td>.645</td>
<td>.380</td>
<td>.335</td>
</tr>
<tr>
<td>ServRES2</td>
<td>.645</td>
<td>1.000</td>
<td>.408</td>
<td>.352</td>
</tr>
<tr>
<td>ServRES3</td>
<td>.380</td>
<td>.408</td>
<td>1.000</td>
<td>.716</td>
</tr>
<tr>
<td>ServRES4</td>
<td>.335</td>
<td>.352</td>
<td>.716</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServRES1</td>
<td>11.3000</td>
<td>3.364</td>
<td>.563</td>
<td>.434</td>
<td>.738</td>
</tr>
<tr>
<td>ServRES2</td>
<td>11.5800</td>
<td>3.216</td>
<td>.581</td>
<td>.448</td>
<td>.729</td>
</tr>
<tr>
<td>ServRES3</td>
<td>11.6500</td>
<td>2.997</td>
<td>.618</td>
<td>.544</td>
<td>.710</td>
</tr>
<tr>
<td>ServRES4</td>
<td>11.5500</td>
<td>3.523</td>
<td>.589</td>
<td>.518</td>
<td>.728</td>
</tr>
</tbody>
</table>

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.3600</td>
<td>5.425</td>
<td>2.32909</td>
<td>4</td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded((a))</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

\(a\) Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.808</td>
<td>2</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServCOURT1</td>
<td>4.1800</td>
<td>.57525</td>
<td>100</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>4.0400</td>
<td>.65010</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>ServCOURT1</th>
<th>ServCOURT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServCOURT1</td>
<td>1.000</td>
<td>.683</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>.683</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
</table>
The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.2200</td>
<td>1.264</td>
<td>1.12439</td>
<td>2</td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded(a)</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.670</td>
<td>.670</td>
<td>3</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServCRED1</td>
<td>4.2200</td>
<td>.61266</td>
<td>100</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>3.8300</td>
<td>.66750</td>
<td>100</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>4.1100</td>
<td>.76403</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>ServCRED1</th>
<th>ServCRED2</th>
<th>ServCRED3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServCRED1</td>
<td>1.000</td>
<td>.339</td>
<td>.379</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>.339</td>
<td>1.000</td>
<td>.493</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>.379</td>
<td>.493</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServCRED1</td>
<td>7.9400</td>
<td>1.532</td>
<td>.417</td>
<td>.175</td>
<td>.656</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>8.3300</td>
<td>1.314</td>
<td>.510</td>
<td>.270</td>
<td>.540</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>8.0500</td>
<td>1.098</td>
<td>.535</td>
<td>.294</td>
<td>.505</td>
</tr>
</tbody>
</table>

Summary Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Range</th>
<th>Maximum / Minimum</th>
<th>Variance</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Means</td>
<td>4.053</td>
<td>3.830</td>
<td>4.220</td>
<td>.390</td>
<td>1.102</td>
<td>.040</td>
<td>3</td>
</tr>
<tr>
<td>Item Variances</td>
<td>.468</td>
<td>.375</td>
<td>.584</td>
<td>.208</td>
<td>1.555</td>
<td>.011</td>
<td>3</td>
</tr>
</tbody>
</table>
Inter-Item Correlations

<table>
<thead>
<tr>
<th></th>
<th>.404</th>
<th>.339</th>
<th>.493</th>
<th>.153</th>
<th>1.451</th>
<th>.005</th>
</tr>
</thead>
</table>

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.1600</td>
<td>2.540</td>
<td>1.59367</td>
<td>3</td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases Valid</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded (a)</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

* a Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th></th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.981</td>
<td>.982</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServSEC1</td>
<td>4.4100</td>
<td>.51434</td>
<td>100</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>4.4100</td>
<td>.53362</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>ServSEC1</th>
<th>ServSEC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServSEC1</td>
<td>1.000</td>
<td>.964</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>.964</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServSEC1</td>
<td>4.4100</td>
<td>.285</td>
<td>.964</td>
<td>.929</td>
<td>.(a)</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>4.4100</td>
<td>.265</td>
<td>.964</td>
<td>.929</td>
<td>.(a)</td>
</tr>
</tbody>
</table>

* a The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8200</td>
<td>1.078</td>
<td>1.03845</td>
<td>2</td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases Valid</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded (a)</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

* a Listwise deletion based on all variables in the procedure.
Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.881</td>
<td>.881</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServUNDER1</td>
<td>3.5400</td>
<td>.79671</td>
<td>100</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>3.9100</td>
<td>.65281</td>
<td>100</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>3.6400</td>
<td>.68931</td>
<td>100</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>3.6000</td>
<td>.71067</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>ServUNDER1</th>
<th>ServUNDER2</th>
<th>ServUNDER3</th>
<th>ServUNDER4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServUNDER1</td>
<td>1.000</td>
<td>.735</td>
<td>.597</td>
<td>.724</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>.735</td>
<td>1.000</td>
<td>.556</td>
<td>.597</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>.597</td>
<td>.556</td>
<td>1.000</td>
<td>.693</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>.724</td>
<td>.957</td>
<td>.693</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServUNDER1</td>
<td>11.1500</td>
<td>3.139</td>
<td>.794</td>
<td>.669</td>
<td>.828</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>10.7800</td>
<td>3.769</td>
<td>.717</td>
<td>.563</td>
<td>.857</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>11.0500</td>
<td>3.705</td>
<td>.691</td>
<td>.514</td>
<td>.866</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>11.0900</td>
<td>3.456</td>
<td>.777</td>
<td>.631</td>
<td>.833</td>
</tr>
</tbody>
</table>

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.6900</td>
<td>6.014</td>
<td>2.45235</td>
<td>4</td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>Valid</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Excluded(a)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.802</td>
<td>.806</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServTANG1</td>
<td>4.1300</td>
<td>.70575</td>
<td>100</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>4.0700</td>
<td>.59041</td>
<td>100</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>3.8300</td>
<td>.75284</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>ServTANG1</th>
<th>ServTANG2</th>
<th>ServTANG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServTANG1</td>
<td>1.000</td>
<td>.535</td>
<td>.612</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>.535</td>
<td>1.000</td>
<td>.595</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>.612</td>
<td>.595</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServTANG1</td>
<td>7.9000</td>
<td>1.444</td>
<td>.647</td>
<td>.420</td>
<td>.733</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>7.9600</td>
<td>1.716</td>
<td>.631</td>
<td>.401</td>
<td>.759</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>8.2000</td>
<td>1.293</td>
<td>.689</td>
<td>.475</td>
<td>.690</td>
</tr>
</tbody>
</table>

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.0300</td>
<td>3.039</td>
<td>1.74341</td>
<td>3</td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded(a)</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach's Alpha</td>
<td>.330</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>4.3800</td>
<td>.70754</td>
<td>100</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>3.5500</td>
<td>.72995</td>
<td>100</td>
</tr>
</tbody>
</table>
Summary Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Range</th>
<th>Maximum / Minimum</th>
<th>Variance</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Means</td>
<td>3.965</td>
<td>3.550</td>
<td>4.380</td>
<td>.830</td>
<td>1.234</td>
<td>.344</td>
<td>2</td>
</tr>
<tr>
<td>Item Variances</td>
<td>.517</td>
<td>.501</td>
<td>.533</td>
<td>.032</td>
<td>1.064</td>
<td>.001</td>
<td>2</td>
</tr>
<tr>
<td>Inter-Item Correlations</td>
<td>.198</td>
<td>.198</td>
<td>.198</td>
<td>.000</td>
<td>1.000</td>
<td>.000</td>
<td>2</td>
</tr>
</tbody>
</table>

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases Valid</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded (a)</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.914</td>
<td>.917</td>
<td>14</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>53.0600</td>
<td>30.602</td>
<td>.495</td>
<td>.913</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>52.8400</td>
<td>30.560</td>
<td>.706</td>
<td>.907</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>53.0500</td>
<td>29.765</td>
<td>.537</td>
<td>.912</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>52.9600</td>
<td>29.150</td>
<td>.656</td>
<td>.907</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>52.9700</td>
<td>30.029</td>
<td>.582</td>
<td>.910</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>52.9200</td>
<td>30.559</td>
<td>.627</td>
<td>.908</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>52.9900</td>
<td>30.879</td>
<td>.562</td>
<td>.910</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>53.0600</td>
<td>28.400</td>
<td>.779</td>
<td>.902</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>52.9800</td>
<td>30.161</td>
<td>.683</td>
<td>.907</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>52.7200</td>
<td>30.870</td>
<td>.591</td>
<td>.910</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>52.8100</td>
<td>30.378</td>
<td>.579</td>
<td>.910</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>53.1200</td>
<td>28.834</td>
<td>.680</td>
<td>.906</td>
</tr>
<tr>
<td>GarmPERCQ1</td>
<td>53.1600</td>
<td>28.196</td>
<td>.780</td>
<td>.902</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>53.1400</td>
<td>29.374</td>
<td>.604</td>
<td>.909</td>
</tr>
</tbody>
</table>

Summary Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Range</th>
<th>Maximum / Minimum</th>
<th>Variance</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Means</td>
<td>4.076</td>
<td>3.900</td>
<td>4.340</td>
<td>.440</td>
<td>1.113</td>
<td>.017</td>
<td>14</td>
</tr>
<tr>
<td>Item Variances</td>
<td>.371</td>
<td>.214</td>
<td>.495</td>
<td>.281</td>
<td>2.315</td>
<td>.010</td>
<td>14</td>
</tr>
<tr>
<td>Inter-Item Correlations</td>
<td>.440</td>
<td>.191</td>
<td>.795</td>
<td>.605</td>
<td>4.170</td>
<td>.015</td>
<td>14</td>
</tr>
</tbody>
</table>
Factor Analysis

EXTRACTED factor analysis for SERVICES

Communalities

<table>
<thead>
<tr>
<th>Variable</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>1.000</td>
<td>.808</td>
</tr>
<tr>
<td>ServRES1</td>
<td>1.000</td>
<td>.678</td>
</tr>
<tr>
<td>ServRES2</td>
<td>1.000</td>
<td>.684</td>
</tr>
<tr>
<td>ServRES3</td>
<td>1.000</td>
<td>.729</td>
</tr>
<tr>
<td>ServRES4</td>
<td>1.000</td>
<td>.761</td>
</tr>
<tr>
<td>ServCOURT1</td>
<td>1.000</td>
<td>.761</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>1.000</td>
<td>.816</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>1.000</td>
<td>.711</td>
</tr>
<tr>
<td>ServCRED1</td>
<td>1.000</td>
<td>.757</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>1.000</td>
<td>.641</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>1.000</td>
<td>.629</td>
</tr>
<tr>
<td>ServSEC1</td>
<td>1.000</td>
<td>.860</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>1.000</td>
<td>.873</td>
</tr>
<tr>
<td>ServUNDER1</td>
<td>1.000</td>
<td>.770</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>1.000</td>
<td>.683</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>1.000</td>
<td>.691</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>1.000</td>
<td>.726</td>
</tr>
<tr>
<td>ServTANG1</td>
<td>1.000</td>
<td>.692</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>1.000</td>
<td>.790</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>1.000</td>
<td>.678</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Total Variance Explained

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Var</td>
<td>Cum%</td>
</tr>
<tr>
<td>1</td>
<td>8.338</td>
<td>41.689</td>
<td>41.689</td>
</tr>
<tr>
<td>2</td>
<td>2.537</td>
<td>12.683</td>
<td>54.371</td>
</tr>
<tr>
<td>4</td>
<td>1.179</td>
<td>5.893</td>
<td>68.218</td>
</tr>
<tr>
<td>5</td>
<td>1.096</td>
<td>5.478</td>
<td>73.695</td>
</tr>
<tr>
<td>6</td>
<td>.807</td>
<td>4.037</td>
<td>77.732</td>
</tr>
<tr>
<td>7</td>
<td>.718</td>
<td>3.592</td>
<td>81.324</td>
</tr>
<tr>
<td>8</td>
<td>.595</td>
<td>2.973</td>
<td>84.297</td>
</tr>
<tr>
<td>9</td>
<td>.497</td>
<td>2.483</td>
<td>86.780</td>
</tr>
<tr>
<td>10</td>
<td>.452</td>
<td>2.261</td>
<td>89.041</td>
</tr>
<tr>
<td>11</td>
<td>.414</td>
<td>2.069</td>
<td>91.110</td>
</tr>
<tr>
<td>12</td>
<td>.325</td>
<td>1.627</td>
<td>92.737</td>
</tr>
<tr>
<td>13</td>
<td>.307</td>
<td>1.537</td>
<td>94.274</td>
</tr>
<tr>
<td>14</td>
<td>.269</td>
<td>1.346</td>
<td>95.620</td>
</tr>
<tr>
<td>15</td>
<td>.237</td>
<td>1.187</td>
<td>96.808</td>
</tr>
<tr>
<td>16</td>
<td>.179</td>
<td>.895</td>
<td>97.702</td>
</tr>
<tr>
<td>17</td>
<td>.167</td>
<td>.833</td>
<td>98.536</td>
</tr>
<tr>
<td>18</td>
<td>.157</td>
<td>.783</td>
<td>99.319</td>
</tr>
<tr>
<td>19</td>
<td>.105</td>
<td>.523</td>
<td>99.842</td>
</tr>
<tr>
<td>20</td>
<td>.032</td>
<td>.158</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Extraction Method: Principal Component Analysis.

Component Matrix(a)

<table>
<thead>
<tr>
<th></th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 4</th>
<th>Component 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>.402</td>
<td>.428</td>
<td>.494</td>
<td>.443</td>
<td>.149</td>
</tr>
<tr>
<td>ServRES1</td>
<td>.761</td>
<td>-.106</td>
<td>.047</td>
<td>.244</td>
<td>-.162</td>
</tr>
<tr>
<td>ServRES2</td>
<td>.690</td>
<td>.390</td>
<td>-.041</td>
<td>.122</td>
<td>-.199</td>
</tr>
<tr>
<td>ServRES3</td>
<td>.514</td>
<td>-.223</td>
<td>.641</td>
<td>-.018</td>
<td>-.067</td>
</tr>
<tr>
<td>ServRES4</td>
<td>.597</td>
<td>-.083</td>
<td>.544</td>
<td>-.223</td>
<td>.227</td>
</tr>
<tr>
<td>ServCOURT1</td>
<td>.667</td>
<td>-.001</td>
<td>-.114</td>
<td>-.153</td>
<td>-.530</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>.778</td>
<td>-.170</td>
<td>-.006</td>
<td>.226</td>
<td>-.363</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>.731</td>
<td>-.309</td>
<td>-.035</td>
<td>-.024</td>
<td>.281</td>
</tr>
<tr>
<td>ServCRED1</td>
<td>.599</td>
<td>.409</td>
<td>.280</td>
<td>.259</td>
<td>-.293</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>.629</td>
<td>.108</td>
<td>-.189</td>
<td>.200</td>
<td>.397</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>.658</td>
<td>.318</td>
<td>.057</td>
<td>.026</td>
<td>.301</td>
</tr>
<tr>
<td>ServSEC1</td>
<td>.474</td>
<td>.701</td>
<td>-.369</td>
<td>.082</td>
<td>.008</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>.451</td>
<td>.741</td>
<td>-.337</td>
<td>.086</td>
<td>-.008</td>
</tr>
<tr>
<td>ServUNDER1</td>
<td>.732</td>
<td>-.396</td>
<td>-.209</td>
<td>.137</td>
<td>.123</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>.783</td>
<td>-.181</td>
<td>-.163</td>
<td>.077</td>
<td>.065</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>.662</td>
<td>-.400</td>
<td>-.256</td>
<td>-.074</td>
<td>.148</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>.709</td>
<td>-.340</td>
<td>-.276</td>
<td>.005</td>
<td>.179</td>
</tr>
<tr>
<td>ServTANG1</td>
<td>.590</td>
<td>.409</td>
<td>.092</td>
<td>-.399</td>
<td>.096</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>.616</td>
<td>.211</td>
<td>-.069</td>
<td>-.569</td>
<td>-.192</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>.695</td>
<td>.110</td>
<td>.172</td>
<td>-.384</td>
<td>.078</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
a 5 components extracted.

Rotated Component Matrix(a)

<table>
<thead>
<tr>
<th></th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 4</th>
<th>Component 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServREL1</td>
<td>.008</td>
<td>.311</td>
<td>.021</td>
<td>.048</td>
<td>.842</td>
</tr>
<tr>
<td>ServRES1</td>
<td>.535</td>
<td>.144</td>
<td>.100</td>
<td>.489</td>
<td>.349</td>
</tr>
<tr>
<td>ServRES2</td>
<td>.634</td>
<td>-.085</td>
<td>.091</td>
<td>.500</td>
<td>.131</td>
</tr>
<tr>
<td>ServRES3</td>
<td>.231</td>
<td>-.353</td>
<td>.353</td>
<td>.281</td>
<td>.590</td>
</tr>
<tr>
<td>ServRES4</td>
<td>.321</td>
<td>-.181</td>
<td>.583</td>
<td>.015</td>
<td>.534</td>
</tr>
<tr>
<td>ServCOURT1</td>
<td>.275</td>
<td>.170</td>
<td>.348</td>
<td>.731</td>
<td>-.040</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>.522</td>
<td>.102</td>
<td>.083</td>
<td>.680</td>
<td>.252</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>.770</td>
<td>.005</td>
<td>.282</td>
<td>.060</td>
<td>.189</td>
</tr>
<tr>
<td>ServCRED1</td>
<td>.033</td>
<td>.382</td>
<td>.171</td>
<td>.508</td>
<td>.568</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>.606</td>
<td>.436</td>
<td>.100</td>
<td>-.090</td>
<td>.256</td>
</tr>
<tr>
<td>ServCRED3</td>
<td>.374</td>
<td>.448</td>
<td>.357</td>
<td>-.026</td>
<td>.400</td>
</tr>
<tr>
<td>ServSEC1</td>
<td>.087</td>
<td>.892</td>
<td>.176</td>
<td>.145</td>
<td>.068</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>.035</td>
<td>.900</td>
<td>.178</td>
<td>.148</td>
<td>.093</td>
</tr>
<tr>
<td>ServUNDER1</td>
<td>.839</td>
<td>.038</td>
<td>.074</td>
<td>.228</td>
<td>.083</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>.668</td>
<td>.172</td>
<td>.188</td>
<td>.397</td>
<td>.118</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>.786</td>
<td>.000</td>
<td>.210</td>
<td>.153</td>
<td>-.072</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>.816</td>
<td>.089</td>
<td>.172</td>
<td>.149</td>
<td>-.015</td>
</tr>
<tr>
<td>ServTANG1</td>
<td>.130</td>
<td>.385</td>
<td>.698</td>
<td>.077</td>
<td>.185</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>.173</td>
<td>.255</td>
<td>.752</td>
<td>.342</td>
<td>-.108</td>
</tr>
</tbody>
</table>

Component Transformation Matrix

<table>
<thead>
<tr>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.679</td>
<td>.290</td>
<td>.427</td>
<td>.404</td>
<td>.330</td>
</tr>
<tr>
<td>2</td>
<td>-.527</td>
<td>.794</td>
<td>.196</td>
<td>-.070</td>
<td>.219</td>
</tr>
<tr>
<td>3</td>
<td>-.325</td>
<td>-.492</td>
<td>.260</td>
<td>-.001</td>
<td>.765</td>
</tr>
<tr>
<td>4</td>
<td>.151</td>
<td>.188</td>
<td>-.841</td>
<td>.115</td>
<td>.471</td>
</tr>
<tr>
<td>5</td>
<td>.363</td>
<td>.093</td>
<td>.068</td>
<td>-.905</td>
<td>.189</td>
</tr>
</tbody>
</table>

Factor Analysis - EXTRACTED factor analysis for GARMENTS

Communalities

<table>
<thead>
<tr>
<th>GARMENT</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>1.000</td>
<td>.729</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>1.000</td>
<td>.781</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>1.000</td>
<td>.602</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>1.000</td>
<td>.625</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>1.000</td>
<td>.726</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>1.000</td>
<td>.663</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>1.000</td>
<td>.478</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>1.000</td>
<td>.789</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>1.000</td>
<td>.554</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>1.000</td>
<td>.742</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>1.000</td>
<td>.704</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>1.000</td>
<td>.597</td>
</tr>
<tr>
<td>GarmPERCQ1</td>
<td>1.000</td>
<td>.683</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>1.000</td>
<td>.601</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Total Variance Explained

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>2</td>
<td>1.404</td>
<td>10.030</td>
<td>58.522</td>
</tr>
<tr>
<td>3</td>
<td>1.080</td>
<td>7.714</td>
<td>66.236</td>
</tr>
<tr>
<td>4</td>
<td>.922</td>
<td>6.586</td>
<td>72.822</td>
</tr>
<tr>
<td>5</td>
<td>.759</td>
<td>5.420</td>
<td>78.242</td>
</tr>
<tr>
<td>6</td>
<td>.616</td>
<td>4.398</td>
<td>82.639</td>
</tr>
<tr>
<td>7</td>
<td>.492</td>
<td>3.517</td>
<td>86.156</td>
</tr>
<tr>
<td>8</td>
<td>.444</td>
<td>3.169</td>
<td>89.325</td>
</tr>
<tr>
<td>9</td>
<td>.370</td>
<td>2.642</td>
<td>91.967</td>
</tr>
<tr>
<td>10</td>
<td>.298</td>
<td>2.129</td>
<td>94.096</td>
</tr>
<tr>
<td>11</td>
<td>.261</td>
<td>1.861</td>
<td>95.957</td>
</tr>
</tbody>
</table>
Component Matrix(a)

<table>
<thead>
<tr>
<th>Component</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>.559</td>
<td>.289</td>
<td>.577</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>.749</td>
<td>.205</td>
<td>.422</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>.594</td>
<td>.488</td>
<td>-.103</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>.713</td>
<td>.199</td>
<td>.276</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>.633</td>
<td>.449</td>
<td>-.351</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>.698</td>
<td>-.326</td>
<td>-.265</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>.636</td>
<td>-.267</td>
<td>.044</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>.823</td>
<td>.072</td>
<td>-.325</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>.741</td>
<td>.007</td>
<td>-.075</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>.663</td>
<td>-.548</td>
<td>.047</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>.656</td>
<td>-.518</td>
<td>.077</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>.742</td>
<td>-.122</td>
<td>.175</td>
</tr>
<tr>
<td>GarmPERCQ1</td>
<td>.824</td>
<td>-.026</td>
<td>-.052</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>.660</td>
<td>.179</td>
<td>-.366</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Rotated Component Matrix(a)

<table>
<thead>
<tr>
<th>Component</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>.114</td>
<td>.121</td>
<td>.838</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>.306</td>
<td>.284</td>
<td>.779</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>.010</td>
<td>.667</td>
<td>.397</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>.294</td>
<td>.350</td>
<td>.645</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>.076</td>
<td>.823</td>
<td>.206</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>.708</td>
<td>.402</td>
<td>.017</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>.611</td>
<td>.206</td>
<td>.250</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>.486</td>
<td>.721</td>
<td>.180</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>.472</td>
<td>.484</td>
<td>.311</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>.843</td>
<td>.073</td>
<td>.161</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>.814</td>
<td>.065</td>
<td>.192</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>.562</td>
<td>.263</td>
<td>.460</td>
</tr>
<tr>
<td>GarmPERCQ1</td>
<td>.550</td>
<td>.502</td>
<td>.358</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>.301</td>
<td>.707</td>
<td>.107</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Component Transformation Matrix

<table>
<thead>
<tr>
<th>Component</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.641</td>
<td>.586</td>
<td>.496</td>
</tr>
<tr>
<td>2</td>
<td>-.767</td>
<td>.522</td>
<td>.373</td>
</tr>
<tr>
<td>3</td>
<td>-.040</td>
<td>-.620</td>
<td>.784</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.
Reliability for single factors-GARMENTS

PERFORMANCE

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluded</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.711</td>
<td>.742</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>4.0000</td>
<td>.61955</td>
<td>100</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>4.2200</td>
<td>.46232</td>
<td>100</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>4.0100</td>
<td>.70345</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>GarmPERF1</th>
<th>GarmPERF2</th>
<th>GarmPERF3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>1.000</td>
<td>.600</td>
<td>.348</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>.600</td>
<td>1.000</td>
<td>.521</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>.348</td>
<td>.521</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERF1</td>
<td>8.2300</td>
<td>1.048</td>
<td>.510</td>
<td>.361</td>
<td>.647</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>8.0100</td>
<td>1.182</td>
<td>.679</td>
<td>.471</td>
<td>.513</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>8.2200</td>
<td>.941</td>
<td>.470</td>
<td>.274</td>
<td>.730</td>
</tr>
</tbody>
</table>

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.2300</td>
<td>2.078</td>
<td>1.44148</td>
<td>3</td>
</tr>
</tbody>
</table>

CONFORMANCE

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluded</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. Listwise deletion based on all variables in the procedure.
Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.758</td>
<td>.758</td>
<td>2</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th>Item Statistics</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmCONF1</td>
<td>4.1400</td>
<td>.51286</td>
<td>100</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>4.0700</td>
<td>.51747</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th>Inter-Item Correlation Matrix</th>
<th>GarmCONF1</th>
<th>GarmCONF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmCONF1</td>
<td>1.000</td>
<td>.610</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>.610</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th>Item-Total Statistics</th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmCONF1</td>
<td>4.0700</td>
<td>.268</td>
<td>.610</td>
<td>.372</td>
<td>(.a)</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>4.1400</td>
<td>.263</td>
<td>.610</td>
<td>.372</td>
<td>(.a)</td>
</tr>
</tbody>
</table>

a The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics

<table>
<thead>
<tr>
<th>Scale Statistics</th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.2100</td>
<td>.854</td>
<td>.92436</td>
<td>2</td>
</tr>
</tbody>
</table>

AESTHETIC

Case Processing Summary

<table>
<thead>
<tr>
<th>Case Processing Summary</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>Valid</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Excluded(</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td>a)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.775</td>
<td>.798</td>
<td>3</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th>Item Statistics</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmAEST1</td>
<td>4.3400</td>
<td>.49686</td>
<td>100</td>
</tr>
</tbody>
</table>
Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>GarmAEST1</th>
<th>GarmAEST2</th>
<th>GarmAEST3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmAEST1</td>
<td>1.000</td>
<td>.795</td>
<td>.441</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>.795</td>
<td>1.000</td>
<td>.468</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>.441</td>
<td>.468</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmAEST1</td>
<td>8.1900</td>
<td>1.186</td>
<td>.701</td>
<td>.638</td>
<td>.630</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>8.2800</td>
<td>1.032</td>
<td>.709</td>
<td>.650</td>
<td>.589</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>8.5900</td>
<td>1.032</td>
<td>.481</td>
<td>.232</td>
<td>.881</td>
</tr>
</tbody>
</table>

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.5300</td>
<td>2.191</td>
<td>1.48021</td>
<td>3</td>
</tr>
</tbody>
</table>

PERCEIVED QUALITY

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluded(а)</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

а Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th></th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach's Alpha</td>
<td>.714</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>.714</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>N of Items</td>
<td>2</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERCQ1</td>
<td>3.9000</td>
<td>.68902</td>
<td>100</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>3.9200</td>
<td>.69165</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>GarmPERCQ1</th>
<th>GarmPERCQ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmPERCQ1</td>
<td>1.000</td>
<td>.555</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>.555</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.8200</td>
<td>1.482</td>
<td>1.21755</td>
<td>2</td>
</tr>
</tbody>
</table>

DURABILITY & RELIABILITY (single variables)

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.775</td>
<td>.776</td>
<td>2</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmREL1</td>
<td>4.0900</td>
<td>.62109</td>
<td>100</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>4.0000</td>
<td>.66667</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th>GarmREL1</th>
<th>GarmDURA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmREL1</td>
<td>1.000</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>.634</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmREL1</td>
<td>4.0000</td>
<td>.444</td>
<td>.634</td>
<td>.402</td>
<td>.(a)</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>4.0900</td>
<td>.386</td>
<td>.634</td>
<td>.402</td>
<td>.(a)</td>
</tr>
</tbody>
</table>

The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.0900</td>
<td>1.355</td>
<td>1.16424</td>
<td>2</td>
</tr>
</tbody>
</table>

FEATURES & SERVICEABILITY (single variables)

Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case Processing Summary

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluded (a)</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(a) Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.619</td>
<td>.632</td>
<td>2</td>
</tr>
</tbody>
</table>

Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmFEAT1</td>
<td>4.100</td>
<td>.67420</td>
<td>100</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>4.080</td>
<td>.52570</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>GarmFEAT1</th>
<th>GarmSERV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmFEAT1</td>
<td>1.000</td>
<td>.462</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>.462</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha If Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GarmFEAT1</td>
<td>4.0800</td>
<td>.276</td>
<td>.462</td>
<td>.213</td>
<td>.(a)</td>
</tr>
<tr>
<td>GarmSERV1</td>
<td>4.1000</td>
<td>.455</td>
<td>.462</td>
<td>.213</td>
<td>.(a)</td>
</tr>
</tbody>
</table>

(a) The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.1800</td>
<td>1.058</td>
<td>1.02868</td>
<td>2</td>
</tr>
</tbody>
</table>

OVERALL CUSTOMER SATISFACTION
Item Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTSAT1</td>
<td>4.100</td>
<td>.55958</td>
<td>100</td>
</tr>
<tr>
<td>CUSTSAT2</td>
<td>4.160</td>
<td>.61496</td>
<td>100</td>
</tr>
</tbody>
</table>

Inter-Item Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>CUSTSAT1</th>
<th>CUSTSAT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTSAT1</td>
<td>1.000</td>
<td>.804</td>
</tr>
<tr>
<td>CUSTSAT2</td>
<td>.804</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Item-Total Statistics

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Squared Multiple Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTSAT1</td>
<td>4.1600</td>
<td>.378</td>
<td>.804</td>
<td>.647</td>
<td>.(a)</td>
</tr>
<tr>
<td>CUSTSAT2</td>
<td>4.1000</td>
<td>.313</td>
<td>.804</td>
<td>.647</td>
<td>.(a)</td>
</tr>
</tbody>
</table>

a The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.2600</td>
<td>1.245</td>
<td>1.11573</td>
<td>2</td>
</tr>
</tbody>
</table>

SERVICES- Descriptive for reduced SERVQUAL SCALE

Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Sum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>15.00</td>
<td>40.00</td>
<td>2991.00</td>
<td>29.9100</td>
<td>4.50834</td>
</tr>
<tr>
<td>Understanding</td>
<td>100</td>
<td>6.00</td>
<td>10.00</td>
<td>882.00</td>
<td>8.8200</td>
<td>1.03845</td>
</tr>
<tr>
<td>Security</td>
<td>100</td>
<td>10.00</td>
<td>20.00</td>
<td>1584.00</td>
<td>15.8400</td>
<td>2.14486</td>
</tr>
<tr>
<td>Tangibles</td>
<td>100</td>
<td>5.00</td>
<td>10.00</td>
<td>822.00</td>
<td>8.2200</td>
<td>1.12439</td>
</tr>
<tr>
<td>Courtesy</td>
<td>100</td>
<td>6.00</td>
<td>15.00</td>
<td>1231.00</td>
<td>12.3100</td>
<td>1.67389</td>
</tr>
<tr>
<td>Serviceability</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REGRESSION FOR REDUCED SERVQUAL SCALE

Variables Entered/Removed(b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serviceability, Security, Understanding, Tangibles, Courtesy(a)</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

a All requested variables entered.
b Dependent Variable: CUSTSAT1
Model Summary(b)

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adj R Square</th>
<th>Std. Error of the Estimate</th>
<th>Change Statistics</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.532(a)</td>
<td>.283</td>
<td>.245</td>
<td>.48624</td>
<td>.283</td>
<td>7.424</td>
</tr>
</tbody>
</table>

a Predictors: (Constant), Serviceability, Security, Understanding, Tangibles, Courtesy
b Dependent Variable: CUSTSAT1

ANOVA(b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>8.776</td>
<td>5</td>
<td>1.755</td>
<td>7.424</td>
<td>.000(a)</td>
</tr>
<tr>
<td>Residual</td>
<td>22.224</td>
<td>94</td>
<td>.236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31.000</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Predictors: (Constant), Serviceability, Security, Understanding, Tangibles, Courtesy
b Dependent Variable: CUSTSAT1

Coefficients(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Constant)</td>
<td>1.541</td>
<td>.518</td>
<td>2.975</td>
<td>.004</td>
</tr>
<tr>
<td>Understanding</td>
<td>.033</td>
<td>.016</td>
<td>.268</td>
<td>2.083</td>
</tr>
<tr>
<td>Security</td>
<td>.025</td>
<td>.051</td>
<td>.047</td>
<td>.492</td>
</tr>
<tr>
<td>Tangibles</td>
<td>.048</td>
<td>.031</td>
<td>.185</td>
<td>1.542</td>
</tr>
<tr>
<td>Courtesy</td>
<td>-.069</td>
<td>.063</td>
<td>-.138</td>
<td>-1.093</td>
</tr>
<tr>
<td>Serviceability</td>
<td>.093</td>
<td>.036</td>
<td>.278</td>
<td>2.578</td>
</tr>
</tbody>
</table>

a Dependent Variable: CUSTSAT1

Coefficient Correlations(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Serviceability</th>
<th>Security</th>
<th>Understanding</th>
<th>Tangibles</th>
<th>Courtesy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Correlations</td>
<td>1.000</td>
<td>-.073</td>
<td>-.029</td>
<td>-.344</td>
<td>-.195</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>-.073</td>
<td>1.000</td>
<td>.017</td>
<td>-.217</td>
</tr>
<tr>
<td></td>
<td>Understanding</td>
<td>-.029</td>
<td>.017</td>
<td>1.000</td>
<td>-.305</td>
</tr>
<tr>
<td></td>
<td>Tangibles</td>
<td>-.344</td>
<td>-.217</td>
<td>-.305</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Courtesy</td>
<td>-.195</td>
<td>-.097</td>
<td>-.543</td>
<td>-.091</td>
</tr>
<tr>
<td></td>
<td>Serviceability</td>
<td>.001</td>
<td>.000</td>
<td>-1.65E-005</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>.000</td>
<td>.003</td>
<td>1.36E-005</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Understanding</td>
<td>-1.65E-005</td>
<td>1.36E-005</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Tangibles</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Courtesy</td>
<td>.000</td>
<td>.000</td>
<td>-.001</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Dependent Variable: CUSTSAT1

Residuals Statistics(a)

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Value</td>
<td>3.2276</td>
<td>4.7932</td>
<td>4.1000</td>
<td>.29774</td>
</tr>
<tr>
<td>Residual</td>
<td>-2.49189</td>
<td>.96669</td>
<td>.000000</td>
<td>.47380</td>
</tr>
<tr>
<td>Std. Predicted Value</td>
<td>-2.930</td>
<td>2.328</td>
<td>.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Std. Residual</td>
<td>-5.125</td>
<td>1.988</td>
<td>.000</td>
<td>.974</td>
</tr>
</tbody>
</table>
GAMENTS – Descriptive for reduced GARVIN’s SCALE

Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Sum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td>100</td>
<td>17.00</td>
<td>30.00</td>
<td>2464.00</td>
<td>24.6400</td>
<td>2.70995</td>
</tr>
<tr>
<td>Reliability</td>
<td>100</td>
<td>8.00</td>
<td>20.00</td>
<td>1602.00</td>
<td>16.0200</td>
<td>2.15547</td>
</tr>
<tr>
<td>Performance</td>
<td>100</td>
<td>8.00</td>
<td>15.00</td>
<td>1232.00</td>
<td>12.3200</td>
<td>1.47628</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>100</td>
<td>17.00</td>
<td>30.00</td>
<td>2464.00</td>
<td>24.6400</td>
<td>2.70995</td>
</tr>
</tbody>
</table>

REGRESSION FOR REDUCED GARMENTS SCALE

Variables Entered/Removed(b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Performance, Reliability, Aesthetics(a)</td>
<td></td>
<td>Enter</td>
</tr>
</tbody>
</table>

Model Summary(b)

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adj R Square</th>
<th>Std. Error of the Estimate</th>
<th>R Square Change</th>
<th>F change</th>
<th>df1</th>
<th>df2</th>
<th>Sig F change</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.647(a)</td>
<td>.418</td>
<td>.400</td>
<td>.43343</td>
<td>.418</td>
<td>23.004</td>
<td>3</td>
<td>96</td>
<td>.000</td>
<td>2.156</td>
</tr>
</tbody>
</table>

ANCOVA(b)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>12.965</td>
<td>3</td>
<td>4.322</td>
<td>23.004</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>18.035</td>
<td>96</td>
<td>.188</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31.000</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.588</td>
<td>.429</td>
<td>1.369</td>
</tr>
</tbody>
</table>
Coefficient Correlations(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Performance</th>
<th>Reliability</th>
<th>Aesthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlations</td>
<td>1.000</td>
<td>-.336</td>
<td>-.389</td>
</tr>
<tr>
<td></td>
<td>-.336</td>
<td>1.000</td>
<td>-.412</td>
</tr>
<tr>
<td></td>
<td>-.389</td>
<td>-.412</td>
<td>1.000</td>
</tr>
<tr>
<td>Covariances</td>
<td>Performance</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Aesthetics</td>
<td>0.000</td>
<td>0.001</td>
</tr>
</tbody>
</table>

a Dependent Variable: CUSTSAT1

Residuals Statistics(a)

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Value</td>
<td>3.2698</td>
<td>4.8903</td>
<td>4.1000</td>
<td>.36188</td>
<td>100</td>
</tr>
<tr>
<td>Residual</td>
<td>-2.41314</td>
<td>1.17434</td>
<td>.00000</td>
<td>.42682</td>
<td>100</td>
</tr>
<tr>
<td>Std. Predicted Value</td>
<td>-2.294</td>
<td>2.184</td>
<td>.000</td>
<td>1.000</td>
<td>100</td>
</tr>
<tr>
<td>Std. Residual</td>
<td>-5.568</td>
<td>2.709</td>
<td>.000</td>
<td>.985</td>
<td>100</td>
</tr>
</tbody>
</table>

a Dependent Variable: CUSTSAT1
Appendix G- Glossary of Statistical Data

1. Descriptive Statistics

Mean
The mean value is one of the simplest models used in statistics which represents a summary of data. According to Field (2005) mean is a hypothetical value that can be calculated for any set of data.

2. Reliability

A. service
Determinants of Service Quality in Clothing Industry

The choice of criterion may depend on the size of the average communalities and the number of variables and participants. The Kaiser criterion has been recommended where the number of variables is less than 30 and the average number of the communalities is greater than 0.7 (Bryman et al. 2009).

Table Rotated Component Matrix- SERVQUAL scale (after removing SERVCRED3)

<table>
<thead>
<tr>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach's Alpha</td>
<td>.909</td>
<td>.981</td>
<td>.726</td>
<td>.808</td>
<td>.671</td>
</tr>
<tr>
<td>ServREL1</td>
<td>.018</td>
<td>.306</td>
<td>.023</td>
<td>.017</td>
<td>.832</td>
</tr>
<tr>
<td>ServRES1</td>
<td>.538</td>
<td>.146</td>
<td>.102</td>
<td>.468</td>
<td>.372</td>
</tr>
<tr>
<td>ServRES2</td>
<td>.625</td>
<td>-.094</td>
<td>.086</td>
<td>.508</td>
<td>.146</td>
</tr>
<tr>
<td>ServRES3</td>
<td>.245</td>
<td>-.342</td>
<td>.358</td>
<td>.222</td>
<td>.614</td>
</tr>
<tr>
<td>ServRES4</td>
<td>.336</td>
<td>-.181</td>
<td>.585</td>
<td>-.025</td>
<td>.530</td>
</tr>
<tr>
<td>ServCOURT1</td>
<td>.255</td>
<td>.155</td>
<td>.339</td>
<td>.767</td>
<td>.016</td>
</tr>
<tr>
<td>ServCOURT2</td>
<td>.509</td>
<td>.091</td>
<td>.077</td>
<td>.695</td>
<td>.274</td>
</tr>
<tr>
<td>ServCOMM1</td>
<td>.776</td>
<td>.001</td>
<td>.282</td>
<td>.052</td>
<td>.181</td>
</tr>
<tr>
<td>ServCRED1</td>
<td>.052</td>
<td>.400</td>
<td>.181</td>
<td>.442</td>
<td>.609</td>
</tr>
<tr>
<td>ServCRED2</td>
<td>.615</td>
<td>.431</td>
<td>.103</td>
<td>-.092</td>
<td>.237</td>
</tr>
<tr>
<td>ServSEC1</td>
<td>.106</td>
<td>.900</td>
<td>.185</td>
<td>.114</td>
<td>.080</td>
</tr>
<tr>
<td>ServSEC2</td>
<td>.053</td>
<td>.907</td>
<td>.185</td>
<td>.118</td>
<td>.103</td>
</tr>
<tr>
<td>ServUNDER1</td>
<td>.841</td>
<td>.032</td>
<td>.073</td>
<td>.226</td>
<td>.085</td>
</tr>
<tr>
<td>ServUNDER2</td>
<td>.678</td>
<td>.180</td>
<td>.192</td>
<td>.368</td>
<td>.143</td>
</tr>
<tr>
<td>ServUNDER3</td>
<td>.789</td>
<td>-.004</td>
<td>.209</td>
<td>.155</td>
<td>-.071</td>
</tr>
<tr>
<td>ServUNDER4</td>
<td>.811</td>
<td>.076</td>
<td>.168</td>
<td>.173</td>
<td>-.025</td>
</tr>
<tr>
<td>ServTANG1</td>
<td>.139</td>
<td>.383</td>
<td>.701</td>
<td>.064</td>
<td>.184</td>
</tr>
<tr>
<td>ServTANG2</td>
<td>.172</td>
<td>.252</td>
<td>.752</td>
<td>.352</td>
<td>.093</td>
</tr>
<tr>
<td>ServTANG3</td>
<td>.331</td>
<td>.133</td>
<td>.691</td>
<td>.159</td>
<td>.217</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
 a Rotation converged in 11 iterations.
B. Garments

Table Communalities-Garvin’s scale (after extraction GARMSEVR1)

<table>
<thead>
<tr>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach’s Alpha</td>
<td>.863</td>
<td>.816</td>
<td>.776</td>
</tr>
<tr>
<td>GarmPERF1</td>
<td>.110</td>
<td>.112</td>
<td>.843</td>
</tr>
<tr>
<td>GarmPERF2</td>
<td>.307</td>
<td>.285</td>
<td>.778</td>
</tr>
<tr>
<td>GarmPERF3</td>
<td>.017</td>
<td>.674</td>
<td>.395</td>
</tr>
<tr>
<td>GarmFEAT1</td>
<td>.297</td>
<td>.359</td>
<td>.639</td>
</tr>
<tr>
<td>GarmREL1</td>
<td>.078</td>
<td>.820</td>
<td>.209</td>
</tr>
<tr>
<td>GarmCONF1</td>
<td>.711</td>
<td>.400</td>
<td>.021</td>
</tr>
<tr>
<td>GarmCONF2</td>
<td>.610</td>
<td>.194</td>
<td>.260</td>
</tr>
<tr>
<td>GarmDURA1</td>
<td>.484</td>
<td>.710</td>
<td>.183</td>
</tr>
<tr>
<td>GarmAEST1</td>
<td>.843</td>
<td>.071</td>
<td>.160</td>
</tr>
<tr>
<td>GarmAEST2</td>
<td>.817</td>
<td>.069</td>
<td>.189</td>
</tr>
<tr>
<td>GarmAEST3</td>
<td>.566</td>
<td>.268</td>
<td>.458</td>
</tr>
<tr>
<td>GarmPERCQ1</td>
<td>.562</td>
<td>.520</td>
<td>.354</td>
</tr>
<tr>
<td>GarmPERCQ2</td>
<td>.306</td>
<td>.713</td>
<td>.102</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a Rotation converged in 5 iterations.

3. Regression Analysis

Regression has become one of the most common techniques in the analysis of data in the social sciences and can be used to explore relationships between pairs of variables (Bryman et al. 2009).

- **ANOVA**- tests whether the model is better at predicting the outcome than using the mean as ‘best guess’.

 As per Bryman et al (2009) there are two rows in the Model column; regression (variation accounted for the model) and residual (variation that is not accounted for by the model).

- Durbin-Watson statistic which says whether the assumption of independent errors is tenable (Field, 2005).

- **Coefficients** - T-tests measures of whether the predictor contributing to the overall model. The predictor is making a significant contribution to the model if the Sig. value is less than .05 (Field, 2005).
Appendix H- Determinants of service quality- Data Analysis

<table>
<thead>
<tr>
<th>Determinants of service quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVREL (reliability) consistency of performance and dependability. It means that the firm performs the service right the first time (accuracy in billing, keeping records correctly)</td>
</tr>
<tr>
<td>SERVRESP1 (responsiveness 1)- concerns the willingness or readiness of employees to provide service (i.e. checking the sizes in the stock room).</td>
</tr>
<tr>
<td>SERVRESP2 (responsiveness 2)- employees are never too busy to respond to customers request.</td>
</tr>
<tr>
<td>SERVRESP3 (responsiveness 3)-the waiting time outside fitting room is generally acceptable for customers.</td>
</tr>
<tr>
<td>SERVRESP4 (responsiveness4) -the waiting time taken at the billing counter is generally acceptable for customers.</td>
</tr>
<tr>
<td>SERVCOMM1 (communication 1)- ZARA personnel provide appropriate explanation on garments.</td>
</tr>
<tr>
<td>SERVCOURT1 (courtesy 1)-ZARA personnel always look professional.</td>
</tr>
<tr>
<td>SERVCOURT2 (courtesy 2)-ZARA employees are consistently courteous with customers.</td>
</tr>
<tr>
<td>SERVCRED1 (credibility 1)- ZARA performs its service right the first time.</td>
</tr>
<tr>
<td>SERVCRED2 (credibility 2)- when customer has a problem ZARA shows a sincere interest in solving it.</td>
</tr>
<tr>
<td>SERVCRED3 (credibility 3)- ZARA is known for keeping its promises (i.e. exchange or full refund).</td>
</tr>
<tr>
<td>SERVSEC1 (security 1)- customers feel safe in transactions with ZARA (i.e. payment security)</td>
</tr>
<tr>
<td>SERVSEC2 (security 2)-customers feel safe shopping at ZARA.</td>
</tr>
<tr>
<td>SERVUNDER1 (understanding 1)-the ZARA has employees who provide customer individual attention.</td>
</tr>
<tr>
<td>SERVUNDER2 (understanding 2)-the behaviour of ZARA employees instill confidence in customers.</td>
</tr>
<tr>
<td>SERVUNDER3 (understanding 3)-ZARA employees have the knowledge to answer customers’ enquiries.</td>
</tr>
<tr>
<td>SERVUNDER4 (understanding 4)- ZARA employees understand the specific needs of their customers.</td>
</tr>
<tr>
<td>SERVTANG1 (tangibility 1)- ZARA stores atmosphere and decor are appealing.</td>
</tr>
<tr>
<td>SERVTANG2 (tangibility 2)-ZARA employees’ uniforms appear neat.</td>
</tr>
<tr>
<td>SERVTANG3 (tangibility 3)-materials associated with the service (such as pamphlets with promotions) are visually appealing.</td>
</tr>
</tbody>
</table>
Appendix I- Garments dimensions of quality- Data Analysis

<table>
<thead>
<tr>
<th>Garments dimensions of quality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GARMPERF1 (performance 1) - ZARA provide a variety of sizes.</td>
<td></td>
</tr>
<tr>
<td>GARMPERF2 (performance 2) - ZARA garments are comfortable.</td>
<td></td>
</tr>
<tr>
<td>GARMPERF3 (performance 3) - ZARA garments are ‘easy care’ (i.e. washing, ironing).</td>
<td></td>
</tr>
<tr>
<td>GARMFEAT1 (feature 1) - Zara garments fit well.</td>
<td></td>
</tr>
<tr>
<td>GARMREL1 (reliability 1) - ZARA garments wear well within a specific period of time.</td>
<td></td>
</tr>
<tr>
<td>GARMCONF1 (conformance 1) - The ZARA branded garments are of good reputation.</td>
<td></td>
</tr>
<tr>
<td>GARMCONF2 (conformance 2) - The description of ZARA garments is consistent with the actual product (i.e. fabric, colour).</td>
<td></td>
</tr>
<tr>
<td>GARMMDURA1 (durability 1) - ZARA garments are durable (considering material, structural and stylistic durability).</td>
<td></td>
</tr>
<tr>
<td>GARMRSERV1 (serviceability 1) - ZARA garments have clear care labels and guarantees.</td>
<td></td>
</tr>
<tr>
<td>GARMAEST1 (aesthetics 1) - ZARA garments are stylish.</td>
<td></td>
</tr>
<tr>
<td>GARMAEST2 (aesthetics 2) - ZARA garments look modern and are of original design.</td>
<td></td>
</tr>
<tr>
<td>GARMAEST3 (aesthetics 3) - ZARA garments fabric line/ details (sewing and finishing methods) are of high quality.</td>
<td></td>
</tr>
<tr>
<td>GARMPERCQ1 (perceived quality 1) - ZARA brands garments are of high quality.</td>
<td></td>
</tr>
<tr>
<td>GARMPERCQ2 (perceived quality 2) - ZARA garments are good value for money.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix J- Additional Statistics- Service

To test the normality of residuals the histogram (Fig) and normal probability plot (Fig) are checked.

The histogram looks like a normal distribution (a bell-shaped curve). The distribution is roughly normal, although there are slight deficiencies in the residuals.

Similarly, the normal probability plot (Fig. below) shows up small deviation from normality. Normal distribution in this plot is represented by the straight line, and the points represent the observed residuals. In a perfectly normally distributed data set, all points lie on the line (Field, 2005). In this P-Plot some of the dots are distant from the line, which indicates small variations from normality.
Figure P-Plot of Regression

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: CUSTSAT1
Appendix K- Additional Statistics- Garments

Similarly to the case of customer satisfaction with the quality of service, the histogram for satisfaction with garments quality looks like a normal distribution (a bell-shaped curve). The distribution is even closer to a perfect shape of the normal distribution.

Figure Histogram- Regression Standardized Residual-Garments

In this P-Plot not all points lie on the line, and it is noticeable that some of the dots are distant from the line. This presents some deviation from normality.
Figure P-Plot- Garments

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: CUSTSAT1
Appendix L-Approaches to Quality

Garvin (1984) framework concerning approaches to quality suggests that there are at least four disciplines including philosophy, economics, marketing, operations management, and each of them has viewed quality from a different perspective, focusing on distinct aspects of quality.

The first major approach to the definition of quality identified by Garvin (1984) is the **transcendent approach** of philosophy, according which quality is synonymous with ‘*innate excellence*’. According to Sower et al. (2005) the transcendent approach is the least understood and least utilized of the five approaches identified by Garvin, and is mentioned as being the realm of philosophers before discussion is quickly shifted to more “practical” approaches. Proponent of this view claim that quality cannot be defined precisely; rather it is a simple, analyzable property that we learn to recognize only through experience (Brown et al., 2001). Sower et al. (2005) think that listening to Plato and following the transcendent approach to quality enables one to advance to the insight level of awareness and develop the breakthrough products and technologies of the 21st century. This is the basis for technological leadership and quality leadership as well.

A **product based** definition of quality views quality as a precise and measurable variable. According to this view, differences in quality reflect differences in the quantity of some ingredient or attribute possessed by a product (Mehta, 1998).

Garvin (1984) argues that this approach leads to vertical or hierarchical dimensions of quality, for goods can be ranked according to amount of the desired attribute that they possess. It is worth to mention that an unambiguous ranking is possible only if the attributes in question are considered preferable by virtually all buyers.
A **user based** definition of quality simply means that quality is whatever the customer says or wants - which goes back to meeting or exceeding customers’ requirements and expectations (Mehta, 1998). Individual consumers however are assumed to have different wants or needs, and those goods that best satisfy their preferences are those that they regard as having the highest quality. This is idiosyncratic and personal view of quality, and one that is highly subjective (Garvin, 1984). As per Kelemen (2003) marketers have done a great deal to indentify the needs of the customers through ‘preference testing’ in order to sensitize the manufacturers to what is significant for customers.

In contrast, **manufacturing-based** definitions focus on the supply side of the equation, and are primarily concerned with engineering and manufacturing practices (Garvin, 1984). This managerial approach defines quality as the degree to which a specific product conforms to a design or specification; where quality is defined as conformance to requirements (Crosby, 1979). Process and design variation are seen to be a constant thread to achieving conformance to requirements. Some researchers argue that variations can be totally eliminated (i.e. Crosby’s ‘zero defects’ philosophy), others (i.e. Deming) are of the opinion that only a certain type of variation is controllable. It is generally accepted; however that if the design and the production process are stable and reliable, quality is inherent (Kelemen, 2003). According to manufacturing-based approach, improvements in quality lead to lower costs, for preventing defects is viewed as less expensive than repairing or reworking them (Garvin, 1984). In order to achieve consistency in design companies can employ Taguchi methods of designing engineering that assume that any deviation from the centre, no matter how small, increases a product’s ultimate cost, including warranty, liability, lost customer goodwill (Kelemen, 2003).
The last approach to the Garvin’s definition of quality is value-based approach that takes the cost reduction goal one step further. This approach defines quality in terms of costs and practices according which a quality product is one that provides performance at an acceptable price or conformance at an acceptable cost (Garvin, 1984). The relationship between quality and cost is very complex and in the western manufacturing paradigm is held to be a direct one, that is, the better quality presupposes higher costs. Additionally this relationship is fraught with difficulties, as it is widely accepted that price affects people’s perceptions of quality; for some consumers, smaller prices (i.e. ‘value for money’) signal reasonable quality at competitive prices. On the other hand, at the upper end of the market, high prices signal uniqueness and exquisite quality reserved only for the few who can afford it (Kelemen, 2003).
Appendix M- ZARA- Focus on customers

According to Inditex Annual Report (2011) for Inditex business model customers are at the heart of any activity. The following points are discussed in the report’s section relating to customers;

• The group focus on its customers’ decisions and needs, not only from the fashion point of view but all other aspects that complete the purchasing experience, including quality, safe and sustainable products, local stores in the main shopping areas of cities and customers care as well attention from the staff;

• The social responsibility policy consist the group’s commitment to the customer that inspires all the activities of the Group. These are carried out in accordance with the highest standards of quality, safety and environmental sustainability;

• Being obliged to their clients Inditex has developed two internal standards: Clear to Wear (ensures the healthiness of the product) and Safe to Wear (guarantees its safety) on product health and safety. These standards aim to meet the most exacting requirements regarding product quality worldwide, and are necessary for all suppliers.

In Inditex the products and processes are regularly inspected and as per the Annual Report (2011) only in 2011 over 250,000 chemical analyses of products were carried out, as well as 1,900 factory inspection visits and 17,000 tests and analyses.