Show simple item record

dc.contributor.advisorHoare, Terrien
dc.contributor.authorShaikh, Aquib Hassan
dc.date.accessioned2019-12-04T18:40:36Z
dc.date.available2019-12-04T18:40:36Z
dc.date.issued2019
dc.identifier.citationShaikh, A.H. (2019). Yelp rating classification using connected graph feature extraction and feature importance in machine learning workflow. Masters Thesis, Dublin Business School.en
dc.identifier.urihttps://esource.dbs.ie/handle/10788/3962
dc.description.abstractThis thesis titled- “Yelp Rating Classification Using Connected Graph Feature Extraction and Feature Importance In Machine Learning Workflow” focused on Yelp’s Challenge Dataset Round 13, we analyze data about restaurants from Yelp, specifically the reviews, to classify the star-ratings of the restaurants based on the contents of the reviews. In this thesis, I focus on improving the ML workflow using graph algorithms: connected feature extraction and feature importance in classification. Graph-enhanced ML can help fill in that missing contextual information that is so important for better decisions. ML pipeline was build using a few classification algorithms and H2O AutoML: Automatic Machine Learning interface for automating the machine learning workflow. The results obtained reveal that connected graph features played an important role in enhanced machine learning workflow. H2O’s Stacked Ensemble best able to classify the yelp rating with use of business influential rating obtained from Page Rank graph algorithm.en
dc.language.isoenen
dc.publisherDublin Business Schoolen
dc.rightsItems in eSource are protected by copyright. Previously published items are made available in accordance with the copyright policy of the publisher/copyright holder.en
dc.rights.urihttp://esource.dbs.ie/copyrighten
dc.subjectMachine learningen
dc.subjectClassificationen
dc.titleYelp rating classification using connected graph feature extraction and feature importance in machine learning workflowen
dc.typeThesisen
dc.rights.holderCopyright: The authoren
dc.type.degreenameMSc in Data Analyticsen
dc.type.degreelevelMSc


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record