The repository is currently being upgraded to DSpace 7. Temporarily, only admins can login. Submission of items and changes to existing items is prohibited until the completion of this upgrade process.

Show simple item record

dc.contributor.advisorHoare, Terrien
dc.contributor.authorSingh, Shalini
dc.date.accessioned2021-04-30T14:24:05Z
dc.date.available2021-04-30T14:24:05Z
dc.date.issued2020
dc.identifier.citationSingh, S. (2020). Classification of retinal pathology from OCT images using a parametric tuned CNN. Masters Thesis, Dublin Business School.en
dc.identifier.urihttps://esource.dbs.ie/handle/10788/4276
dc.description.abstractOptometrists nowadays use optical biopsy to get cross sectional images of the retina infected by pathologies. This is also known as Optical Coherence Tomography (OCT). It is important to identify the retinal diseases at an early stage to prevent damage to the vision. There is a lot of research to be done to find a suitable method which can automatically detect retinal diseases. Therefore, we propose this research for automatic detection of retinal diseases by using a novel method of hyperparameter tuning instead of manually detecting the parameters of our Convolutional Neural Network (CNN). The Model is tested on metrics such as F1-score, precision, specificity, sensitivity, loss graph and accuracy. We also compare it with pretrained state-of-the-art model of Inception V3 and result shows that hyperparameter-tuned CNN gets better results. Being reliable, this proposed model can be used by optometrists to detect retinal disorders at an early stage.en
dc.language.isoenen
dc.publisherDublin Business Schoolen
dc.rightsItems in eSource are protected by copyright. Previously published items are made available in accordance with the copyright policy of the publisher/copyright holder.en
dc.rights.urihttp://esource.dbs.ie/copyrighten
dc.subjectDeep Learningen
dc.titleClassification of retinal pathology from OCT images using a parametric tuned CNNen
dc.typeThesisen
dc.rights.holderCopyright: The authoren
dc.type.degreenameMSc in Data Analyticsen
dc.type.degreelevelMScen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record