
1

A Machine Learning Approach to Identifying

Malicious DNS Requests through Server Log Analysis

Teja Kolla

10623040

Dissertation submitted in partial fulfilment of the requirement

for the degree of

Master of Science in Data Analytics

at Dublin Business School

Supervisor: Satya Prakash

August 2023

2

Declaration

I hereby declare that the dissertation presented to Dublin Business School for the purpose of

obtaining the [MSc. Data Analytics] degree is the culmination of my independent research

endeavors, except in instances explicitly acknowledged through proper citations. Additionally,

I confirm that this work has not been presented for any other academic qualification.

Signed: Teja Kolla

Student Number: 10623040

Date: August 2023

3

Acknowledgement

I would like to express my sincere gratitude to my supervisor, Satya Prakash, for his invaluable

guidance and support throughout this research.

I am also thankful to my family and friends for their unwavering encouragement and belief in my

abilities.

This work would not have been possible without the resources provided by Dublin Business School

Lastly, I extend my appreciation to all participants and contributors who played a role in this research.

Teja Kolla

[August,2023]

4

Abstract

In the dynamic landscape of digital connectivity, the Domain Name System (DNS) plays a significant role

in internet infrastructure, enabling the translation of human readable domain names into machine

understandable IP addresses. Unfortunately, this critical service also presents a vulnerable entry point for

cyber attackers to execute a range of malicious activities including phishing, malware distribution, and

domain hijacking. Traditional manual analysis of DNS traffic struggles to cope with the volume and

complexity of modern cyber threats. To address this challenge, a comprehensive approach is proposed

that harnesses the capabilities of machine learning for the identification of malicious DNS requests

through server log analysis. The primary objective of this research is to design, implement, and evaluate

a robust machine learning framework capable of distinguishing between benign and malicious DNS

requests. Using a diverse dataset of server logs, appropriate preprocessing techniques are employed to

cleanse and transform the raw data into a suitable format for analysis. The approach focuses on the

identification of relevant features and the engineering of domain-specific attributes that capture the

behavior of both legitimate and malicious requests. Through a comprehensive evaluation process, a range

of machine learning algorithms suitable for classification tasks are explored. The chosen models undergo

critical assessment using established evaluation metrics to quantify their performance in differentiating

between malicious and benign DNS requests.

Keywords: Domain Name System (DNS), machine learning, malicious requests, server log analysis,

cybersecurity, classification algorithms.

5

Contents
Chapter 1: Introduction .. 8

1.1 Problem Statement: .. 9

1.2 Research Objectives: ... 9

1.3 Research Questions: ... 9

1.4 Significance and Motivation:... 9

1.5 Scope and Limitations: .. 10

1.6 Outline: ... 11

2.1 Introduction: ... 12

2.2 Concepts of DNS and Malicious Requests: ... 12

DNSSEC: ... 12

DNS firewall: .. 12

2.3 Previous Research in DNS Request Analysis and attack detection: .. 13

2.4 Challenges and Gaps in the Literature: ... 14

Chapter 3: Research Methodology .. 16

3.1 Research Design and Approach: ... 16

3.2 Data Collection (Server Log Analysis): ... 16

3.2.1 Data Source and Description: .. 16

3.3 Data Preprocessing: .. 17

3.3.1 Handling Missing Values: ... 17

3.3.2 Label Encoding: .. 17

3.3.3 Min-Max Normalization: .. 17

3.3.4 Standard Scaling: .. 18

3.3.5 Principal Component Analysis (PCA): ... 18

3.3.6 Summary: ... 18

3.4 Exploratory Data Analysis: .. 18

3.4.1 Basic Statistics: ... 18

3.4.2 Univariate Analysis: .. 18

3.4.3 Bivariate Analysis: .. 19

3.4.4 Correlation Matrix: ... 22

3.5 Feature Selection and Engineering: .. 23

3.5.1 Feature Importance: .. 23

3.5.2 Recursive Feature Elimination (RFE): ... 23

6

3.5.3 PCA Transformation: .. 23

3.6 Data Modelling: ... 24

3.6.1 Model Selection: .. 24

3.6.2 Data Splitting: ... 24

3.6.3 Model Training: .. 24

3.6.4 Hyperparameter Tuning: .. 24

3.6.5 Model Evaluation: .. 24

3.6.6 Ensemble Methods: ... 24

3.6.7 Model Selection: Based .. 24

3.6.8 Model Interpretation: .. 24

3.7 Classification algorithms ... 25

3.7.1 Random Forest: .. 25

3.7.2 K-Nearest Neighbors (KNN): .. 25

3.7.3 Gradient Boosting: ... 25

3.7.4 Logistic Regression: .. 26

3.7.5 Decision Tree:... 26

3.7.6 Naive Bayes: ... 26

3.7.7 Support Vector Machine (SVM): .. 27

3.7.8 Auto ML (Rapid Miner): ... 27

3.7.9 Data Mining Pipeline .. 29

Chapter 4: Evaluation and Results ... 31

4.1 Model Evaluation Metrics ... 31

4.2 Classification reports: .. 31

4.2.1 Random Forest: .. 31

4.2.2 KNN: ... 32

4.2.3 Logistic Regression ... 34

4.2.4 Decision Tree .. 34

4.2.5 Naive Bayes .. 35

4.2.6 SVM .. 35

Chapter 5: Conclusion .. 37

Chapter 6: Future Work ... 38

References .. 39

Appendix ... 40

7

Table of Figures

Figure 1 : Distribution of Target Variable.. 19

Figure 2: Distribution of DNSRecordType ... 19

Figure 3 : Distribution of feature CommonPorts with Target variable ... 20

Figure 4: Distribution of feature TXTDnsResponse ... 21

Figure 5: Distribution of feature HasDkimInfo with Target variable .. 21

Figure 6: Correlation Heat map .. 22

Figure 7: Results from Auto modelling using Rapid Miner ... 28

Figure 8: ROC Curve for Random Forest ... 32

8

Chapter 1: Introduction

In today's digital landscape, the rapid growth of online activities has led to an increase in cyber threats

and attacks. One of the prominent attack vectors involves the Domain Name System (DNS), which is a

fundamental component of the internet infrastructure responsible for translating human-readable

domain names into IP addresses. Malicious actors exploit DNS to carry out various cyber-attacks, including

domain hijacking, phishing attacks, malware distribution, and command-and-control communication

Detecting these malicious activities in DNS requests is of paramount importance to ensure the security

and integrity of online services and networks. Traditional methods of manual analysis fall short due to the

sheer volume of data generated by DNS requests and the evolving tactics of cyber attackers.

In the digital realm, where communication occurs between devices through numerical IP addresses, DNS

acts as an essential intermediary, facilitating easy access to websites and online resources. This

hierarchical system functions much like a phone directory for the internet, enabling users to navigate the

vast online landscape using familiar domain names, such as www.example.com, instead of numerical IP

addresses.

At its core, DNS operates through a series of servers that collaboratively manage the translation process.

When a user enters a domain name in their web browser, the DNS system sequentially queries a hierarchy

of servers, starting from local caches to authoritative name servers, until it obtains the corresponding IP

address. This process is crucial for enabling seamless connectivity across the internet, allowing users to

effortlessly access websites, send emails, and engage in various online activities.

DNS serves as the backbone of the internet's addressing system, ensuring that users can navigate the

digital landscape intuitively and efficiently. Given its indispensable role, any disruption or compromise to

the DNS system can have far-reaching implications for online services, security, and privacy. Therefore,

understanding and securing the DNS ecosystem against potential threats and attacks is of paramount

importance to maintaining a safe and resilient online environment.

Web servers play a critical role in the digital economy, providing a platform for businesses to interact with

customers and conduct transactions. However, with this increased reliance on web servers comes an

increased risk of cyber-attacks, with attackers seeking to exploit vulnerabilities in web applications to gain

access to sensitive data or disrupt operations. Detection of anomalies in web traffic is an essential

component for a web application for providing insights into potential threats and vulnerabilities.

Traditionally, prevention of attacks in web traffic has relied on rule-based methods to prevent attacks on

a web server. These methods are often limited by their static nature and lack of scalability. With the

growing volume, complexity and dynamic nature of web attacks, there is a need for more sophisticated

approaches that can handle large attacks and adapt to changing threats. This is where the integration of

machine learning techniques becomes essential.

9

Many intrusion detection systems have been developed, however most of these systems focus on analysis

of packets transferred at the transport layer. In this proposed research, the aim is to develop a machine

learning-based approach for anomaly detection in web server logs, which is at application layer. The

primary objective of this research is to investigate the effectiveness of machine learning algorithms for

detecting anomalies and pattern recognition in web server logs and build a classifier model that can

improve the accuracy and robustness of the detection system by evaluating the predictions of multiple

classifiers.

1.1 Problem Statement:

The core challenge this research endeavors to address is the identification and classification of malicious

DNS requests within a large amount of legitimate DNS traffic. Manual analysis and rule-based approaches,

while once effective, are now struggling to contend with the subtleties of modern cyber-attack strategies,

which often employ complex techniques to evade detection. Consequently, a more proactive, automated,

and scalable approach is required to accurately differentiate between benign and malicious DNS requests.

1.2 Research Objectives:

The primary objective of this research is to design, implement, and evaluate a robust machine learning

framework capable of identifying malicious DNS requests based on patterns, behaviors, and attributes

extracted from server log data. The framework aims to empower organizations with an advanced tool to

detect and counteract cyber threats proactively, enhancing their overall cybersecurity posture.

1.3 Research Questions:

This research seeks to address the following key questions:

1. How can machine learning techniques be harnessed to effectively identify and classify malicious

DNS requests from server log data?

2. What are the most relevant features and attributes that enable accurate differentiation between

legitimate and malicious DNS requests?

3. How does the performance of various machine learning algorithms compare in the context of DNS

request classification?

1.4 Significance and Motivation:

The significance of this research extends beyond conventional cybersecurity practices that often focus on

analyzing network and transport layer activities. In many instances, the detection of anomalies and

malicious activities involves scrutinizing packet-level information, a methodology that has proven

effective at identifying external threats. However, this approach falls short in identifying threats and

attacks that operate at the application layer—where requests and responses are processed by web

applications. This is where our research assumes paramount importance.

By concentrating on the application layer and leveraging the vast potential of machine learning, this

research explores a novel avenue for identifying and categorizing malicious DNS requests. Unlike

10

traditional methods that often rely on dissecting packets, our approach harnesses the wealth of

information stored within server logs. The application layer is a treasure trove of insights into user

behavior, requests, and interactions, making it an invaluable source for uncovering nuanced threats that

might evade detection at lower layers of the network stack.

Moreover, the application layer's emphasis on user interactions renders it more closely aligned with the

goals of modern cyber attackers, who seek to exploit vulnerabilities in web applications for financial gain,

data theft, and disruption of services. By fortifying the application layer's defenses, our research aligns

with the evolving threat landscape and provides organizations with a proactive means of countering

sophisticated cyber threats.

In summary, this research is motivated by the imperative to expand the realm of cybersecurity beyond

traditional paradigms. By shifting the focus to the application layer and leveraging the capabilities of

machine learning, proposed approach offers a new perspective on identifying malicious DNS requests—

adding a potent tool to the arsenal of defenders against the ever-evolving tactics of cyber attackers.

1.5 Scope and Limitations:

The scope of this research is centered on the identification of malicious DNS requests through the lens of

machine learning and server log analysis. The research methodology encapsulates the collection,

preprocessing, and analysis of DNS request data, leading to the development and evaluation of machine

learning models capable of distinguishing between benign and malicious requests. The objective is to

enhance the cybersecurity framework by addressing a specific yet critical aspect of cyber threats.

However, it is important to acknowledge that server logs have a wealth of information beyond DNS

requests alone. The server logs encompass a comprehensive record of user behavior, HTTP requests,

potential SQL injection attacks, and many other ‘Application layer’ activities. While this research maintains

a specific focus on DNS requests, the methodology and principles can indeed be extended to encompass

a broader spectrum of security threats.

The limitations of this research stem from its targeted scope. By concentrating solely on DNS requests, we

inevitably omit the multifaceted landscape of application layer security challenges. While DNS request

identification forms a crucial layer of defense against certain types of cyber threats, it is not a solution for

all security vulnerabilities. Such as threats that operate at the application layer, including SQL injection

attacks and sophisticated user behavior anomalies, warrant separate and dedicated research applications.

In summary, while this research focuses on a distinctive approach to DNS request analysis, it is vital to

recognize that the potential of server log analysis extends beyond DNS requests. Future research

endeavors can explore the broader realm of application layer security, encompassing diverse threats and

attack vectors that demand specialized attention.

11

1.6 Outline:

The subsequent chapters of this dissertation will delve into the research methodology, data collection,

preprocessing, exploratory data analysis, feature selection, model selection, evaluation, and the

interpretation of results. The final chapters will provide conclusions, insights, and recommendations for

future research.

In summary, this introductory chapter lays the foundation for a comprehensive exploration of the

utilization of machine learning in the identification of malicious DNS requests. The subsequent chapters

will delve into the intricacies of the research process, culminating in a holistic understanding of the

potential and limitations of this groundbreaking approach to cybersecurity.

12

Chapter 2: Literature Review

2.1 Introduction: Pattern Recognition and Anomaly detection in server logs using machine learning

techniques has been extensively studied. There are a wide range of algorithms and techniques proposed

on server log analysis for various applications. In this section, we will review the literature on anomaly

detection using machine learning techniques, identify the strengths and weaknesses of existing

approaches, and highlight areas for future research.

2.2 Concepts of DNS and Malicious Requests:

The Domain Name System (DNS) stands as a cornerstone of modern internet functionality, translating

human-readable domain names into numerical IP addresses that underpin online communication. This

hierarchical, distributed system involves recursive and iterative queries across a network of servers to

efficiently resolve domain names. DNS plays an integral role in enabling seamless navigation across the

internet, underpinning services ranging from web browsing to email communication.

However, alongside the utility of DNS lies a vulnerability exploited by malicious actors. As stated in this

study by (Rajendran, 2018) Malicious DNS requests encompass a spectrum of activities, from domain

hijacking to DNS cache poisoning and distributed denial-of-service (DDoS) attacks. These requests aim to

manipulate DNS responses, redirect users to malicious websites, or compromise the integrity of data

transmission. Detecting and thwarting such malicious requests is imperative to ensuring the security and

stability of online services.

Understanding malicious DNS requests necessitates a grasp of the intricacies of DNS protocol

vulnerabilities, such as DNS amplification and tunneling. Moreover, the ability to distinguish between

benign and malicious requests rests on analyzing patterns, query types, and behaviors that deviate from

established norms. As a result, the study of malicious DNS requests involves not only a mastery of DNS

functionality but also a nuanced comprehension of potential threat vectors and their characteristics.

Against this backdrop of vulnerabilities and historical attacks, two significant security advancements

emerge: Domain Name System Security Extensions (DNSSEC) and DNS firewall solutions.

DNSSEC: Outlined in RFC 4033 (Rose, 2005), employs cryptographic digital signatures for data origin

authentication and integrity enhancement. Although DNSSEC is widespread, only a minute percentage of

domains implement it. While it thwarts spoofing and man-in-the-middle attacks, complexities in

implementation and misconfigurations introduce vulnerabilities.

The subsequent sections dive into the exploration of DNS and malicious requests, and research efforts,

insights that underpin the development of effective detection and prevention strategies.

DNS firewall: These solutions confront challenges posed by Domain Generation Algorithm (DGA)-based

malicious activities (Plohmann, 2016). These algorithms, rooted in arithmetic, hash, wordlist, and

permutation methods, create randomized domains, posing challenges for detection.

13

2.3 Previous Research in DNS Request Analysis and attack detection:

In this published study conducted by (Jin, 2019) the proposed method constructs a DNS database from

cached DNS data history logs. The analysis phase extracts features from original DNS query-response pairs,

maps them to corresponding cached DNS records, and populates the DNS database. Incoming DNS query-

response pairs are analyzed in collaboration with the DNS database to determine whether to add received

DNS records to the cache. False positives lead to identification and investigation of end clients based on

historical DNS database logs. This study focuses on categorizing three specific attack patterns: legitimate

cases, Kaminsky attacks, and DNS cache poisoning attacks from compromised authoritative DNS servers.

Legitimate cases involve caching DNS records from legitimate responses.

The study done by (Ming Li, 2021) recognizes that APT attacks involve the compromise of specific hosts

within a network, leading to unique behavioral patterns. One notable contribution is the identification of

characteristic patterns in DNS request sequences made by compromised hosts over time. These patterns

serve as distinctive features for detecting compromised hosts, even in the absence of known malicious

domain samples. By focusing on temporal patterns within DNS logs, the study introduces an innovative

approach to APT detection.

Additionally, the research contributes by conducting extensive evaluations on a real large-scale network

environment, utilizing 70 days' worth of DNS request records. This practical validation demonstrates the

effectiveness of their proposed approach in detecting APT compromises. Furthermore, the study validates

its method using a public dataset, allowing for comparisons with existing detection methods.

This paper (Shalaginov, 2016) discusses the challenges and complexities associated with detecting

malware beaconing through DNS logs, emphasizing the importance of periodicity detection. Malicious

software often communicates with Command and Control (C2) servers by sending DNS queries for C2

server IP addresses through internal or external DNS servers. These DNS responses may contain encoded

data, making it challenging to detect malware job-scheduling.

• Unpredictable sleep times: Malware activation and beaconing times are not known in advance.

• Multiple period usage: Attackers may change beaconing intervals over time.

• Time variation: Attackers vary sleep times to avoid detection, mimicking legitimate

communication patterns.

• Noise: Benign applications, such as system updates, can produce regular beacons.

• Multiple channels usage: Malware may shift between different C2 servers.

• Benign beacon: Some legitimate applications generate regular beacons.

• Needle in a haystack: Large enterprises generate massive log volumes, making it challenging to

identify malicious activities quickly.

• Near real-time detection: Identifying malicious beacon events as soon as possible is crucial, but it

can be challenging due to the sheer volume of network traffic and the delay between malware

launch and beaconing.

This paper (Yan, 2020) introduces a novel system for Advanced Persistent Threat (APT) attack detection

through DNS logs. Thorough log analysis yielded seven DNS features strongly correlated with suspicious

APT activities. Leveraging recent advances in machine learning, a neural network model was developed

14

to find out the detailed relationship between DNS behavior and APT attacks. The model achieved

compelling results, boasting a 96.8% recall and a 97.6% accuracy. The contributions of this work are

manifold. Identification of seven DNS features spanning three categories and eight DNS features

connected to APT activities. Introduction of three novel DNS behavior-related features, specifically

centered on the interaction between DNS request and response messages, as well as the temporal

attributes of DNS logs. Development of a robust system with the help of deep learning for detecting

malicious DNS behavior within APT attacks and generating a feature set.

One of the most common approaches to anomaly detection using machine learning is based on clustering

algorithms one such technique is proposed in (Juvonen, 2012) . Clustering algorithms group data points

together based on their similarity, and anomalies are identified as data points that do not belong to any

of the clusters. K-means and DBSCAN are two examples of clustering algorithms that have been used for

anomaly detection in various applications. The strengths of clustering-based anomaly detection include

their ability to identify previously unknown anomalies and their ability to handle large datasets. However,

clustering algorithms can be sensitive to the choice of hyper-parameters and may require manual tuning,

which can be time-consuming and require expert knowledge.

Another approach to anomaly detection using machine learning is based on classification algorithms.

Classification algorithms learn a model based on labelled data and use this model to classify new data

points as either normal or anomalous. Decision trees, support vector machines, and Random Forest are

examples of classification algorithms that have been used for anomaly detection. There is comparison

study done by using different classification algorithms in (Pham, 2016). The strengths of classification-

based anomaly detection include their ability to handle high-dimensional data and their ability to detect

anomalies in real-time. However, classification algorithms require labeled data for training, which can be

difficult to obtain in some applications. Moreover, classification algorithms may struggle to identify

previously unknown anomalies that do not fit into the learned model.

A third approach to anomaly detection using machine learning is based on Classification using deep

learning algorithms such as CNNs and RNNs. DeepLog (Du, 2017) is one such model built on deep learning

algorithm. However deep learning models need training on large amount of normal data (non-anomalous

server logs) in order to identify anomalies in new logs. Deep learning based algorithms offer several

advantages in terms of their ability to handle high-dimensional data, identify anomalies, and handle noisy

data, this is evident in the study done in (Zhang, 2022).

Clustering-based, classification-based, and deep learning based approaches all have their strengths and

weaknesses, and the choice of approach depends on the specific requirements of the application. Future

research should focus on developing more efficient and scalable algorithms, addressing the challenge of

detecting previously unknown anomalies, and exploring the use of ensemble methods for anomaly

detection that can effectively handle large-scale web server logs.

2.4 Challenges and Gaps in the Literature:

A notable gap and challenge is the limited focus on real-time anomaly detection in the context of DNS log

analysis. While various studies discuss the identification of APTs and malicious behavior through DNS logs,

15

many of these methods rely on historical data or batch processing, which may not be suitable for timely

threat mitigation.

Addressing this gap is essential because advanced threats often require rapid responses to prevent

significant damage. Developing real-time anomaly detection techniques, potentially incorporating

Machine-Learning models such as CNNs and RNNs, could significantly enhance network security by

identifying suspicious DNS behaviors as they occur. However, this approach may present challenges

related to processing speed, scalability, and handling noisy data in real-time scenarios.

Future research should aim to bridge this gap by exploring and developing effective real-time DNS

anomaly detection methods, considering the challenges of handling the high data volume and ensuring

timely threat identification and response. This would contribute to strengthening network security against

APTs and other emerging threats.

16

Chapter 3: Research Methodology

3.1 Research Design and Approach:

In this research, a systematic approach is employed to investigate and address the complex challenges

associated with "Identifying malicious DNS requests from server log analysis using machine learning." The

research methodology follows a well-established CRISP-DM (Cross-Industry Standard Process for Data

Mining) framework originally proposed by (Shearer, Fall 2000), which provides a structured and

comprehensive guideline for conducting data-driven research and analysis for data mining.

CRISP-DM emerges as an ideal choice for this investigation due to its versatility and applicability across

diverse domains. It furnishes a systematic roadmap for every phase of the study, spanning from data

collection to model evaluation, effectively guiding the exploration of the multifaceted domain of malicious

DNS request detection.

By adhering to the CRISP-DM framework, this research ensures methodological rigor and the potential for

replication. It promotes efficient communication and synergy among research team members, facilitating

the harnessing of collective expertise to tackle the multifarious dimensions of malicious DNS request

identification.

This approach seamlessly aligns with the research objectives of unveiling hidden patterns within server

logs, analyzing them with machine learning techniques, and subsequently identifying malicious DNS

requests effectively. Through systematic adherence to the CRISP-DM framework, this research aims to

contribute significantly to enhancing our comprehension of malicious DNS request detection and

fortifying cybersecurity measures.

3.2 Data Collection (Server Log Analysis):

3.2.1 Data Source and Description:

The dataset used in this research originates from publicly available DNS logs published by (Magalhães,

2021), encompassing both malicious and non-malicious domain names. It was meticulously curated and

constructed from scratch to serve as a robust foundation for the application of supervised machine

learning techniques in the classification of malicious and non-malicious domain names. To generate this

dataset, comprehensive features were extracted from the domain names, including metrics like domain

name entropy, length, and the presence of unusual characters. In addition, various other attributes such

as domain creation date, Internet Protocol (IP) details, open ports, and geolocation information were

acquired through data enrichment processes, specifically Open Source Intelligence (OSINT).

The categorization of domain names into their respective classes was determined based on the data

source, distinguishing between those sourced from malicious DNS log files and those originating from

non-malicious DNS log files. Notably, this dataset demonstrates a balanced composition, with

approximately 90,000 domain names evenly distributed, comprising 50% non-malicious and 50%

malicious domain names. This dataset stands as a valuable resource for the application of machine

17

learning algorithms, enabling the development of models capable of discerning between malicious and

non-malicious domain names with enhanced accuracy and efficiency.

3.3 Data Preprocessing:

Data preprocessing and Transformation stages are essential for cleaning, structuring, and enhancing the
raw data, ensuring that data is in a suitable form for model building and analysis. In this section, we will
explore these data preprocessing and transformation steps in detail, providing comprehensive insights in
to the data.

3.3.1 Handling Missing Values:

Missing data is a common issue encountered when working with real-world datasets. In the dataset,
missing values were observed in specific columns such as 'CountryCode,' 'RegisteredCountry,' and
'RegisteredOrg.' Dealing with missing values is crucial, as they can lead to biased results and hinder the
performance of machine learning models. In this context, a pragmatic approach was adopted: the columns
containing missing values were removed. This decision was made because these columns were deemed
non-critical for the research question, and the missing data in these columns did not provide substantial
value for the analysis.

Moreover, a small percentage of rows in the dataset contained missing values. While this percentage was
relatively minor, it's essential to address missing values to maintain data integrity. Therefore, these
incomplete records were removed from the dataset. By doing so, data consistency and quality were
upheld, reducing the potential for errors in subsequent analyses. Eliminating rows with missing values is
a standard practice when the proportion of missing data is minimal and does not significantly impact the
dataset's overall quality or size.

3.3.2 Label Encoding:

Machine learning algorithms primarily operate with numerical data. However, the dataset initially
included non-numerical data, such as categorical features (columns with string data type). To facilitate
the use of these features in machine learning models, a label encoding technique was employed. Label
encoding involves assigning a unique numerical label to each category or class within a categorical feature.
This transformation ensures that the algorithms can effectively process and learn from the data.

3.3.3 Min-Max Normalization:

After encoding the dataset into numerical values, it was essential to address potential discrepancies in
the scales of different features. Features with significantly different scales can negatively impact the
performance of machine learning algorithms, particularly distance-based models. To mitigate this issue,
min-max normalization was applied. This technique scales features to a specific range, typically between
0 and 1. Normalizing the data in this manner ensures that all features have a consistent scale, promoting
fair treatment of each feature during model training.

18

3.3.4 Standard Scaling:

Another normalization technique applied in the data preprocessing pipeline was standard scaling, also
known as Z-score normalization. Standard scaling transforms features to have a mean of 0 and a standard
deviation of 1. This process standardizes the data and centers it around zero. Standard scaling is
particularly useful when working with algorithms that are sensitive to feature scales. By standardizing the
data, you ensure that all features are treated equally in terms of their distribution, preventing any single
feature from dominating the modeling process.

3.3.5 Principal Component Analysis (PCA):

One of the challenges when dealing with datasets containing a large number of features is high
dimensionality. High dimensionality can lead to increased computational complexity and may even result
in overfitting, where a model performs well on training data but poorly on unseen data. To address this
challenge, Principal Component Analysis (PCA) was employed. PCA is a dimensionality reduction
technique that projects the original dataset into a lower-dimensional space while preserving as much
variance as possible. It achieves this by identifying the principal components of the data, which are linear
combinations of the original features. These principal components capture the most critical information
in the data while reducing its dimensionality.

3.3.6 Summary:

In summary, data preprocessing and transformation are fundamental steps in the data mining and
machine learning pipeline, ensuring that the dataset is appropriately prepared for analysis. Handling
missing values, label encoding, normalization through techniques like min-max scaling and standard
scaling, and dimensionality reduction using PCA are integral components of this process. By meticulously
preparing and transforming the data, the foundation is set for more accurate and reliable machine
learning models, ultimately enhancing the effectiveness for identifying malicious DNS requests from
server log analysis using machine learning.

3.4 Exploratory Data Analysis:

3.4.1 Basic Statistics: Basic statistics serve as the foundation of EDA. It involves calculating fundamental

statistical metrics for each feature in the dataset, such as mean, median, standard deviation, minimum,
and maximum values. These statistics provide an initial understanding of the data's central tendencies,
spread, and overall distribution. Basic statistics help identify potential outliers and assess data quality.

3.4.2 Univariate Analysis: Univariate analysis is the examination of individual features in isolation. It

focuses on understanding the distribution, central tendencies, and variability of each feature. This analysis
typically involves creating visualizations like histograms, box plots, and density plots to visualize the data's
shape and characteristics. Univariate analysis helps identify outliers and assess the presence of skewed or
non-normal distributions in the data.

19

Distribution of Target Variable: The dataset is evenly split between malicious and non-malicious
categories, with an equal number of rows (45k) in each.

Figure 1 : Distribution of Target Variable

Distribution of DNSRecordType: There are very few ’MX’ type records

Figure 2: Distribution of DNSRecordType

3.4.3 Bivariate Analysis: Bivariate analysis explores relationships between pairs of variables, with a

primary focus on understanding how the target variable interacts with other features. In your context,
you mentioned visualizing relevant boolean columns with the target variable. This step is essential for
measuring the skewness of the distribution concerning the target variable. Visualizations such as bar plots

20

or stacked bar plots can be used to display the distribution of boolean variables concerning the target.
This helps assess how certain features may influence the likelihood of a DNS request being malicious.

Distribution of feature CommonPorts with Target variable

Figure 3 : Distribution of feature CommonPorts with Target variable

In the case of the ‘CommonPorts’ feature, the data distribution is notably biased towards the non-
malicious category.

21

Distribution of feature TXTDnsResponse with Target variable

Figure 4: Distribution of feature TXTDnsResponse

Figure 5: Distribution of feature HasDkimInfo with Target variable

In this particular feature ‘HasDkimInfo’ the data distribution is heavily skewed towards non-malicious
category

22

3.4.4 Correlation Matrix: Building a correlation matrix is a vital step in understanding the relationships

between numerical variables in your dataset. This matrix provides a numerical representation of the
degree and direction of association between pairs of features. In your case, it can reveal whether there
are any significant correlations between variables related to DNS requests and whether these correlations
are positive or negative. A correlation matrix aids in identifying potential multi collinearity, which can
impact the model interpretability.

Figure 6: Correlation Heat map

From the correlation heat map, it is evident that some features exhibit strong correlations with each other,
while others show significant correlations with the target variable.

23

3.5 Feature Selection and Engineering:

The primary research objective at hand is the precise identification of the most relevant features and
attributes facilitating the accurate differentiation between legitimate and malicious DNS requests. In this
section, we delve into the comprehensive process of feature selection and engineering, a pivotal step in
crafting an effective model for identifying malicious DNS requests from server log analysis.

3.5.1 Feature Importance:

To prioritize features that exhibit the highest discriminative power between legitimate and malicious DNS
requests, the Extra Trees Classifier algorithm is employed. This algorithm evaluates the importance of
each feature and ranks them accordingly. From the large number of attributes, the top 20 features,
contributing most significantly to the classification task, are selected. This step focuses the model's
attention on the most informative aspects of DNS request data, thereby enhancing accuracy and
efficiency.

3.5.2 Recursive Feature Elimination (RFE):

To extract the most important feature set to its most essential components, the Recursive Feature
Elimination (RFE) technique is employed. RFE operates by iteratively fitting a logistic regression model and
identifying the feature with the lowest importance. This feature is then removed from consideration, and
the process is repeated until the desired feature count of 20 is achieved. RFE effectively sifts through the
feature set, retaining only those attributes that contribute significantly to the model's predictive capacity.
This eliminates irrelevant or redundant features, streamlining the model and reducing the risk of
overfitting.

3.5.3 PCA Transformation:

Principal Component Analysis (PCA) offers a robust method for transforming the feature space from
higher dimensions to a lower-dimensional representation. While the initial feature set is comprehensive,
it may contain multicollinearity issues or excessive dimensionality that could hinder model performance.
PCA addresses these concerns by identifying orthogonal axes, or principal components, along which the
data exhibits the most significant variation. By retaining a selected number of these principal components,
dimensionality is reduced without sacrificing crucial information. This transformation expedites
computation and enhances the interpretability of the model.

The importance of feature selection and engineering cannot be overstated in the context of this research.
The objective is to differentiate between benign and malicious DNS requests, ensuring that the model is
trained on the most pertinent attributes. Selecting and refining these features significantly contributes to
model efficiency, interpretability, and generalization.

In summary, the approach to feature selection and engineering encompasses multiple stages, each
designed to enhance the discriminatory power of the model. By focusing on the top 20 features through
Extra Trees Classifier and RFE, the attributes most relevant to the research objective are pin pointed.
Additionally, PCA transformation enables navigation of the challenges of high-dimensional data, ensuring
that the model is both effective and efficient. These steps collectively pave the way for a robust machine
learning model capable of accurately identifying malicious DNS requests within server log data.

24

3.6 Data Modelling:

In the Data Modeling phase, the primary objective is to build and evaluate machine learning models that
can effectively classify DNS requests as either benign or malicious. This phase typically involves several
key steps:

3.6.1 Model Selection: The first step in Data Modeling is the selection of appropriate machine learning

algorithms. In our case, we have explored a range of classification algorithms, including Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression, Random Forest, Decision Tree, Naive
Bayes, and Gradient Boosting. Each algorithm has its unique characteristics, and their suitability depends
on the dataset and problem at hand.

3.6.2 Data Splitting: To assess the performance of the selected models, the dataset is divided into two

subsets: a training set and a testing set. The training set is used to train the models, while the testing set
is used to evaluate their performance. Cross-validation techniques, such as k-fold cross-validation, has
also been employed to ensure robust model assessment.

3.6.3 Model Training: During this step, the selected machine learning algorithms are trained on the

training dataset. The models learn the underlying patterns and relationships within the data, enabling
them to make predictions on unseen DNS requests.

3.6.4 Hyperparameter Tuning: Many machine learning algorithms have hyperparameters that control

their behavior. Tuning these hyper parameters is a crucial part of optimizing model performance.
Techniques like grid search or random search can be used to find the best combination of hyper
parameters for each algorithm.

3.6.5 Model Evaluation: Once the models are trained, they are evaluated using the testing dataset.

Common evaluation metrics for classification tasks include accuracy, precision, recall, F1-score, and area
under the receiver operating characteristic curve (AUC-ROC). These metrics provide insights into how well
the models can differentiate between benign and malicious DNS requests.

3.6.6 Ensemble Methods: Ensemble methods, such as bagging and boosting, may be employed to

combine the predictions of multiple base models. Random Forest and Gradient Boosting are examples of
ensemble algorithms that have been considered in this phase. Ensemble methods can often improve
model performance by reducing overfitting and increasing predictive accuracy.

3.6.7 Model Selection: Based on the evaluation results, one or more models are selected as candidates

for deployment. The choice of the final model(s) depends on the desired trade-offs between various
performance metrics, computational resources, and interpretability.

3.6.8 Model Interpretation: In addition to selecting the best-performing models, it is essential to

understand how these models arrive at their predictions. Interpretability techniques, such as feature
importance analysis and visualization of decision boundaries, can provide insights into the factors that
influence a DNS request's classification.

25

3.7 Classification algorithms

Below are the classification algorithms employed in this research, along with brief explanations of their
operational principles and reasons for their applicability in classification tasks.

3.7.1 Random Forest:

Random Forest is an ensemble learning method that leverages the power of decision trees for
classification. It combines multiple decision trees to make more robust and accurate predictions. In the
context of identifying malicious DNS requests, Random Forest offers several advantages.

Random Forest operates by building a multitude of decision trees during the training phase. Each tree is
trained on a bootstrapped sample of the dataset, and at each node, it selects a random subset of features
for splitting. The final prediction is made by aggregating the results of individual trees, often through
voting.

Random Forest excels at handling high-dimensional data, making it suitable for the DNS dataset with
numerous features. It is also robust to overfitting, as it averages out the idiosyncrasies of individual
decision trees. Moreover, it provides feature importance scores, allowing for a deeper understanding of
the relevance of each attribute in the classification task.

3.7.2 K-Nearest Neighbors (KNN):

K-Nearest Neighbors (KNN) is a straightforward yet effective classification algorithm. It operates on the
principle of similarity, where data points are classified based on the class of their nearest neighbors. In
other words, if a majority of a data point's k-nearest neighbors belong to a specific class, the data point is
assigned to that class.

KNN's simplicity is its strength, making it a suitable choice for identifying malicious DNS requests. It works
well when the decision boundaries between classes are not linear or well-defined. KNN is non-parametric,
meaning it does not make assumptions about the underlying data distribution, making it versatile for
various scenarios.

In the context of DNS request classification, KNN calculates distances between data points, often using
Euclidean distance. The choice of the value of k, representing the number of neighbors to consider, is
crucial. A small k may lead to noisy results, while a large k may smooth out decision boundaries. Finding
the optimal k is part of the model tuning process.

3.7.3 Gradient Boosting:

Gradient Boosting is an ensemble learning method that combines multiple weak learners, typically
decision trees, to create a robust classifier. It is known for its high predictive accuracy and adaptability to
various data types and distributions.

Gradient Boosting works by iteratively training decision trees, with each subsequent tree aiming to correct
the errors of the previous ones. This process continues until the model converges to a strong predictive
performance.

26

In DNS request classification, Gradient Boosting's ability to handle complex relationships between
features and the target variable is invaluable. It excels in capturing nuances within the data, making it an
excellent choice when precise identification of malicious requests is essential.

In conclusion, each of the classification algorithms mentioned has its unique strengths and characteristics,
making them suitable for identifying malicious DNS requests from server log analysis. The choice of
algorithm depends on the specific characteristics of the dataset and the desired trade-offs between
interpretability, accuracy, and computational complexity.

3.7.4 Logistic Regression:

Logistic Regression is a fundamental classification algorithm that models the probability of an instance
belonging to a particular class. It is especially useful when dealing with binary classification problems, such
as identifying malicious DNS requests.

Logistic Regression works by applying the logistic (sigmoid) function to a linear combination of input
features. This transformation maps the output to the range [0, 1], interpreted as the probability of
belonging to the positive class. By setting an appropriate threshold (usually 0.5), instances are classified
into one of the two classes.

Logistic Regression's simplicity and interpretability make it a valuable choice for DNS request
classification. It provides insight into the relationship between input features and the log-odds of the
outcome. Moreover, it can handle high-dimensional data effectively, which is essential for the DNS
dataset with numerous features.

3.7.5 Decision Tree:

Decision Trees are intuitive and interpretable classification algorithms that recursively partition the
dataset into subsets based on feature conditions. In the context of identifying malicious DNS requests,
Decision Trees are valuable for their transparency and ease of interpretation.

A Decision Tree begins with the entire dataset and selects the most informative feature to split the data.
This process continues recursively until a stopping criterion is met, such as a maximum depth or minimum
samples per leaf. Each leaf node represents a class label.

Decision Trees are well-suited for DNS request classification because they can handle both numerical and
categorical data, which is prevalent in this dataset. Their hierarchical structure allows for the visualization
of the decision-making process, aiding in the understanding of why certain DNS requests are classified as
malicious or benign.

3.7.6 Naive Bayes:

Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem, with the "naive"
assumption of feature independence. While this assumption may not hold in all cases, Naive Bayes
remains a useful tool for DNS request classification.

27

Naive Bayes works by calculating the probability of an instance belonging to a class based on the joint
probabilities of its features. It selects the class with the highest probability as the prediction. Despite its
simplicity and the naive independence assumption, Naive Bayes often performs surprisingly well,
especially with high-dimensional data.

In the context of DNS request classification, Naive Bayes can efficiently handle the numerous features
characterizing each request. It is particularly useful when computational resources are limited, as it
requires minimal model training and prediction times.

3.7.7 Support Vector Machine (SVM):

The Support Vector Machine (SVM) is a powerful classification algorithm used extensively in various
domains, including cybersecurity. SVM operates on the principle of finding an optimal hyperplane that
best separates data points belonging to different classes. In the context of identifying malicious DNS
requests from server log analysis with the current data set, SVM proves least effective.

SVM works by mapping data points into a higher-dimensional space, where it strives to create a
hyperplane that maximizes the margin between different classes. This margin represents the distance
between the hyperplane and the nearest data points of each class, ensuring robust separation. The choice
of kernel function is crucial in SVM, as it determines the transformation of data into this higher-
dimensional space. Common kernels include linear, polynomial, and radial basis function (RBF).

SVM is particularly suited for this task due to its ability to handle high-dimensional data, making it ideal
for the feature-rich DNS request dataset. Its strength lies in its ability to find complex decision boundaries
that other algorithms may struggle with. SVM's flexibility in choosing the appropriate kernel function
allows for fine-tuning to achieve optimal classification results.

3.7.8 Auto ML (Rapid Miner):

In addition to the manual modeling with various classification algorithms, an AutoML (Automated
Machine Learning) tool called RapidMiner was employed in this research. RapidMiner is a robust and user-
friendly platform designed to automate the end-to-end process of machine learning, including data
preprocessing, model selection, hyperparameter tuning, and evaluation.

RapidMiner operates by systematically testing a range of machine learning algorithms and configurations
to identify the most suitable model for the given dataset and problem. This tool streamlines the modeling
process by minimizing the need for manual intervention, making it particularly advantageous for handling
complex datasets with numerous features. Furthermore, RapidMiner provides insightful visualizations
and performance metrics, facilitating the comparison of different models and their suitability for the
classification task.

The utilization of RapidMiner in this study allowed for a comprehensive exploration of various
classification algorithms and configurations, saving time and resources while ensuring that the most
effective models were identified. This approach not only contributes to the accuracy and efficiency of the
research but also aligns with the principles of data-driven decision-making in the field of machine learning.

28

Model Accuracy
Standard
Deviation Gains

Total
Time

Training Time
(1,000 Rows)

Scoring Time
(1,000 Rows)

Fast Large
Margin 0.85333 4.10E-04 18046 1322332 53.59134508 220.9457952

Logistic
Regression 0.85321 0.001352174 18030 502211 9.346419808 148.7842962

Random
Forest 0.85216 0.001053529 12540 661003 74.4 1397.6

Decision Tree 0.85110 0.001237716 17932 513016 6.93731876 393.7374526

Generalized
Linear Model 0.85091 6.47E-04 17922 407805 7.249609636 131.3294669

Gradient
Boosted Trees 0.85059 0.001140533 12484 649887 19.168 173.6

Naive Bayes 0.85024 9.05E-04 17888 484400 5.453937096 264.4713362

Deep Learning 0.55507 7.40E-04 2772 627986 274.615213 202.7102387

Figure 7: Results from Auto modelling using Rapid Miner

It is notable that most algorithms delivered an accuracy rate hovering around 85%, indicating their

consistent ability to effectively distinguish between malicious and non-malicious DNS requests. This

uniformity in performance underscores the robustness of the models, irrespective of whether they were

manually configured or automatically generated using RapidMiner.

These findings reinforce the reliability of the selected classification algorithms and highlight the potential

for leveraging automated modeling tools to streamline and expedite the model development process

while maintaining high levels of accuracy.

29

3.7.9 Data Mining Pipeline

30

31

Chapter 4: Evaluation and Results

4.1 Model Evaluation Metrics

In this section, we delve into the various metrics employed to assess the performance of our classification

models. The objective was to identify the most effective model for distinguishing between malicious and

non-malicious DNS requests. The following evaluation metrics were utilized:

Accuracy: This metric measures the overall correctness of the model's predictions, providing an indication

of its reliability.

Precision: Precision quantifies the proportion of true positive predictions out of all positive predictions

made by the model. In the context of our research, it reflects how accurately the model identifies

malicious DNS requests.

Recall (Sensitivity): Recall assesses the model's ability to correctly identify all actual positive instances (i.e.,

malicious DNS requests). It helps gauge the model's sensitivity to detecting malicious activities.

F1-Score: The F1-Score is the harmonic mean of precision and recall. It provides a balanced measure of a

model's performance, considering both false positives and false negatives.

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The ROC curve illustrates the model's

trade-off between true positive rate and false positive rate at various thresholds. AUC-ROC quantifies the

model's capability to distinguish between classes.

Below are the outcomes from the classification reports produced by various classification algorithms

employed in this research.

4.2 Classification reports:

4.2.1 Random Forest:

Random Forest demonstrated the highest level of accuracy at 0.89. The corresponding classification
report for Random Forest is as follows:

32

Random Forest Accuracy: 0.890958435571418

Random Forest Report:

 precision Recall f1-score support

0 0.84 0.96 0.90 13423

1 0.95 0.82 0.88 13475

accuracy 0.89 26898

 macro avg 0.90 0.89 0.89 26898

 weighted avg 0.90 0.89 0.89 26898

Overall accuracy achieved by Random Forest: 0.89, based on a total support of 26898 instances.

The macro average for precision, recall, and F1-score is 0.90, 0.89, and 0.89, respectively, for the entire
dataset, with a total support of 26898 instances.

The weighted average for precision, recall, and F1-score is 0.90, 0.89, and 0.89, respectively, also based
on a total support of 26898 instances."

Figure 8: ROC Curve for Random Forest

4.2.2 KNN:

KNN achieved an accuracy of 0.8745, demonstrating its ability to make accurate classifications. In the
classification report, KNN exhibited balanced precision, recall, and F1-scores for both malicious (Class 1)
and non-malicious (Class 0) categories. This balanced performance suggests that KNN is effective in
identifying both types of DNS requests.

KNN Accuracy: 0.8744888095769202

33

KNN Report:

 precision Recall f1-score support

0 0.83 0.93 0.88 13423

1 0.93 0.82 0.87 13475

accuracy 0.87 26898

 macro avg 0.88 0.87 0.87 26898

 weighted avg 0.88 0.87 0.87 26898

Gradient boosting: Gradient Boosting achieved an accuracy of 0.8663, showcasing its proficiency in

classification tasks. The classification report for Gradient Boosting revealed balanced precision, recall, and

F1-scores for both classes.

Gradient boosting Accuracy: 0.8663469402929586

Gradient boosting Report:

 precision Recall f1-score support

0 0.84 0.91 0.87 13423

1 0.90 0.82 0.86 13475

accuracy 0.87 26898

 macro avg 0.87 0.87 0.87 26898

 weighted avg 0.87 0.87 0.87 26898

34

4.2.3 Logistic Regression

Logistic Regression attained an accuracy of 0.8578, signifying its competence in classification tasks. The

classification report for Logistic Regression exhibited well-balanced precision, recall, and F1-scores for

both malicious and non-malicious categories.

Logistic Regression Accuracy: 0.857833296155848

Logistic Regression Report:

 precision Recall f1-score
support

0 0.83 0.90 0.86 13423

1 0.89 0.81 0.85 13475

accuracy 0.86 26898

 macro avg 0.86 0.86 0.86 26898

 weighted avg 0.86 0.86 0.86 26898

4.2.4 Decision Tree

The Decision Tree model achieved an accuracy of 0.8484, indicating its effectiveness in classification tasks.

The classification report showed balanced precision, recall, and F1-scores for both malicious and non-

malicious DNS requests

Decision Tree Accuracy: 0.8483530374005502

Decision Tree Report:

 precision Recall f1-score
support

0 0.86 0.84 0.85 13423

35

1 0.84 0.86 0.85 13475

accuracy 0.86 26898

 macro avg 0.85 0.85 0.85 26898

 weighted avg 0.85 0.85 0.85 26898

4.2.5 Naive Bayes

Naive Bayes demonstrated an accuracy of 0.8443, highlighting its proficiency in classification. In the

classification report, Naive Bayes exhibited balanced precision, recall, and F1-scores for both malicious

and non-malicious categories. This equilibrium in performance suggests that Naive Bayes is well-suited

for identifying both types of DNS requests.

Naive Bayes Accuracy: 0.8443378689865417

Naive Bayes Report:

 precision Recall f1-score
support

0 0.82 0.88 0.85 13423

1 0.87 0.81 0.84 13475

accuracy 0.84 26898

 macro avg 0.85 0.85 0.84 26898

 weighted avg 0.85 0.85 0.84 26898

4.2.6 SVM

The Support Vector Machine (SVM) classification model achieved an accuracy of 0.7157 in distinguishing

between malicious and non-malicious DNS requests. SVM has demonstrated the least level of accuracy

among the classification algorithms

36

SVM Accuracy: 0.7157037697970109

SVM Report:

 precision Recall f1-score
support

0 0.72 0.70 0.71 13423

1 0.71 0.73 0.72 13475

accuracy 0.72 26898

 macro avg 0.72 0.72 0.72 26898

 weighted avg 0.72 0.72 0.72 26898

37

Chapter 5: Conclusion

In conclusion, this research has delved into the critical domain of identifying malicious DNS requests

through server log analysis using machine learning techniques. The findings and insights obtained from

this study shed light on the effectiveness of various classification algorithms in enhancing cybersecurity

measures. Key takeaways from this research include:

• Algorithm Performance: The evaluation of different classification algorithms revealed that

Random Forest exhibited the highest accuracy of 0.89, indicating its capability to effectively

differentiate between malicious and non-malicious DNS requests. The choice of algorithm may

depend on specific needs, considering the balance between precision and recall.

• Feature Engineering: Feature engineering played a pivotal role in model performance. The

identification and selection of relevant features were instrumental in the accuracy of the

classification models. Feature importance analysis provided valuable insights into the

contribution of each feature to the predictive power of the models.

• Future Enhancements: The research suggests several avenues for future work. Firstly, the

integration of real-time DNS log analysis and continuous model retraining can enhance the

system's ability to adapt to evolving threats. Additionally, exploring ensemble methods and deep

learning approaches may further improve the accuracy of malicious DNS request detection.

38

Chapter 6: Future Work

Building upon the foundation laid by this research, future work in the field of identifying malicious DNS

requests offers exciting opportunities:

• Real-time Detection: Developing systems capable of real-time DNS log analysis and immediate

threat response is a critical step towards proactive cybersecurity. Investigating streaming data

processing and online learning algorithms can aid in achieving this goal.

• Ensemble Methods: Exploring ensemble methods that combine the strengths of multiple

classification algorithms can enhance overall model performance. Techniques like stacking and

boosting may provide improvements in precision and recall.

• Deep Learning: Investigating deep learning architectures, such as Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs), for DNS request analysis can leverage the power

of neural networks to capture complex patterns and behaviors in network traffic.

• Anomaly Detection: Extending the research to anomaly detection in DNS traffic can help identify

novel and previously unseen threats. Unsupervised learning methods and anomaly detection

algorithms can be explored for this purpose.

• Large-Scale Deployment: Scaling up the models and systems to handle the demands of large-scale

networks and cloud environments is essential. Deployment considerations, such as load balancing

and distributed computing, need to be addressed.

39

References
Du, M. a. L. F. a. Z. G. a. S. V., 2017. DeepLog: Anomaly Detection and Diagnosis from System Logs

through Deep Learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, p. 1285–1298.

Jin, Y. a. T. M. a. M. S., 2019. A Detection Method Against DNS Cache Poisoning Attacks Using Machine

Learning Techniques: Work in Progress. s.l., 2019 IEEE 18th International Symposium on Network

Computing and Applications (NCA).

Juvonen, A. a. S. T., 2012. Adaptive framework for network traffic classification using dimensionality

reduction and clustering. 2012 IV International Congress on Ultra Modern Telecommunications and

Control Systems, pp. 274-279.

Magalhães, C. M. a. S. M. a. J. P., 2021. DNS dataset for malicious domains detection. Data in Brief,

38(2352-3409), p. 107342.

Ming Li, Q. L. G. X. D. G., 2021. Identifying compromised hosts under APT using DNS request sequences.

Journal of Parallel and Distributed Computing, 152(0743-7315), pp. 67-78.

Pham, T. S. a. H. T. H. a. V. C. V., 2016. Machine learning techniques for web intrusion detection — A

comparison. 2016 Eighth International Conference on Knowledge and Systems Engineering (KSE), pp.

291-297.

Plohmann, D. a. Y. K. a. K. M. a. B. J. a. G.-P. E., 2016. A comprehensive measurement study of domain

generating malware. s.l.:25th USENIX Security Symposium (USENIX Security 16).

Rajendran, B. a. S. P. a. o., 2018. Proceedings of the International Conference on Security and

Management (SAM). s.l., The Steering Committee of The World Congress in Computer Science,

Computer Engineering and Applied Computing (WorldComp).

Rose, R. A. a. R. A. a. M. L. a. D. M. a. S., 2005. DNS Security Introduction and Requirements, RFC 4033.

s.l.:Internet Engineering Task Force (IETF).

Shalaginov, A. a. F. K. a. H. X., 2016. Malware beaconing detection by mining large-scale dns logs for

targeted attack identification. International Journal of Computer and Systems Engineering, Volume 10,

pp. 743--755.

Shearer, C., Fall 2000. The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data

Warehousing, 5(4), p. 10.

Yan, G. a. L. Q. a. G. D. a. M. X., 2020. Discovering Suspicious APT Behaviors by Analyzing DNS Activities.

Sensors, Volume 20, p. 731.

Zhang, V.-H. L. a. H., 2022. Log-based anomaly detection with deep learning: How Far Are We?.

Proceedings of the 44th International Conference on Software Engineering, may.

40

Appendix

(Data analyzed from DNS logs containing host-based, web-based and numerical features)
34 Features
90K records (two classes)

Table 1: Dataset features with description, data types and default value

 Data Type

 Feature Description Text Boolean Integer Decimal Enumerate
Default
Value

1 Domain
Baseline DNS used
to enrich data
(derive features)

X N/A

2 DNSRecordType
DNS record type
queried

X N/A

3 MXDnsResponse
The response from
a DNS request for
the record type MX

 X FALSE

4 TXTDnsResponse
The response from
a DNS request for
the record type TXT

 X FALSE

5 HasSPFInfo

If the DNS response
has Sender Policy
Framework
attribute

 X FALSE

6 HasDkimInfo

If the DNS response
has Domain Keys
Identified Email
attribute

 X FALSE

7 HasDmarcInfo

If the DNS response
has Domain-Based
Message
Authentication

 X FALSE

8 IP
The IP for the
domain

X null

9 DomainInAlexaDB
If the domain it’s
registered in the
Alexa DB

 X FALSE

41

10 CommonPorts

If the domain it’s
available for
common ports (80,
443, 21, 22, 23, 25,
53, 110, 143, 161,
445, 465, 587, 993,
995, 3306, 3389,
7547, 8080, 8888)

 X FALSE

11 CountryCode
The country code
associated with the
IP of the domain

X null

12 RegisteredCountryCode

The country code
defined in the
domain registration
process (WHOIS)

X null

13 CreationDate
The creation date
of the domain
(WHOIS)

 X 0

14 LastUpdateDate
The last update
date of the domain
(WHOIS)

 X 0

15 ASN
The Autonomous
System Number for
the domain

 X -1

16 HttpResponseCode
The HTTP/HTTPS
response code for
the domain

 X 0

17 RegisteredOrg

The organization
name associated
with the domain
(WHOIS)

X null

18 SubdomainNumber
The number of sub-
domains for the
domain

 X 0

19 Entropy
The Shannon
Entropy of the
domain name

 X 0

20 EntropyOfSubDomains
The mean value of
the entropy for the
sub-domains

 X 0

21 StrangeCharacters

The number of
characters different
from [a-zA-Z] and
considering the
existence
maximum of two

 X 0

42

numeric integer
values

22 TLD
The Top Level
Domain for the
domain

X null

23 IpReputation
The result of the
blocklisted search
for the IP

 X FALSE

24 DomainReputation
The result of the
blocklisted search
for the domain

 X FALSE

25 ConsoantRatio

The ratio of
consonant
characters in the
domain

 X 0

26 NumericRatio
The ratio of
numeric characters
in the domain

 X 0

27 SpecialCharRatio
The ratio of special
characters in the
domain

 X 0

28 VowelRatio
The ratio of vowel
characters in the
domain

 X 0

29 ConsoantSequence

The maximum
number of
consecutive
consonants in the
domain

 X 0

30 VowelSequence

The maximum
number of
consecutive vowels
in the domain

 X 0

31 NumericSequence

The maximum
number of
consecutive
numerics in the
domain

 X 0

32 SpecialCharSequence

The maximum
number of
consecutive special
characters in the
domain

 X 0

43

33 DomainLength
The length of the
domain

 X N/A

34 Class

The class of the
domain (malicious
= 0 and non-
malicious = 1)

 X N/A

44

Table 2: Values description for enumeration features where X denotes all possible values

S.no Feature Values description

1 CreationDate Without data = 0

Until one month = 1

Until six months = 2

2 LastUpdateDate Until one year = 3

After one year = 4

3 HttpResponseCode Without data = 0

1XX response = 1

2XX response = 2

3XX response = 3

4XX response = 4

5XX response = 5

	Chapter 1: Introduction
	1.1 Problem Statement:
	1.2 Research Objectives:
	1.3 Research Questions:
	1.4 Significance and Motivation:
	1.5 Scope and Limitations:
	1.6 Outline:
	2.2 Concepts of DNS and Malicious Requests:
	2.3 Previous Research in DNS Request Analysis and attack detection:
	2.4 Challenges and Gaps in the Literature:

	Chapter 3: Research Methodology
	3.1 Research Design and Approach:
	3.2 Data Collection (Server Log Analysis):
	3.2.1 Data Source and Description:

	3.3 Data Preprocessing:
	3.3.1 Handling Missing Values:
	3.3.2 Label Encoding:
	3.3.3 Min-Max Normalization:
	3.3.4 Standard Scaling:
	3.3.5 Principal Component Analysis (PCA):
	3.3.6 Summary:

	3.4 Exploratory Data Analysis:
	3.5 Feature Selection and Engineering:
	3.5.1 Feature Importance:
	3.5.2 Recursive Feature Elimination (RFE):
	3.5.3 PCA Transformation:

	3.6 Data Modelling:
	3.7 Classification algorithms
	3.7.1 Random Forest:
	3.7.2 K-Nearest Neighbors (KNN):
	3.7.3 Gradient Boosting:
	3.7.4 Logistic Regression:
	3.7.5 Decision Tree:
	3.7.6 Naive Bayes:
	3.7.7 Support Vector Machine (SVM):
	3.7.8 Auto ML (Rapid Miner):
	3.7.9 Data Mining Pipeline

	Chapter 4: Evaluation and Results
	4.1 Model Evaluation Metrics
	4.2 Classification reports:
	4.2.1 Random Forest:
	4.2.2 KNN:
	4.2.3 Logistic Regression
	4.2.4 Decision Tree
	4.2.5 Naive Bayes
	4.2.6 SVM

	Chapter 5: Conclusion
	Chapter 6: Future Work
	References
	Appendix

