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Abstract 

 
In the dynamic landscape of digital connectivity, the Domain Name System (DNS) plays a significant role 

in internet infrastructure, enabling the translation of human readable domain names into machine 

understandable IP addresses. Unfortunately, this critical service also presents a vulnerable entry point for 

cyber attackers to execute a range of malicious activities including phishing, malware distribution, and 

domain hijacking. Traditional manual analysis of DNS traffic struggles to cope with the volume and 

complexity of modern cyber threats. To address this challenge, a comprehensive approach is proposed 

that harnesses the capabilities of machine learning for the identification of malicious DNS requests 

through server log analysis. The primary objective of this research is to design, implement, and evaluate 

a robust machine learning framework capable of distinguishing between benign and malicious DNS 

requests. Using a diverse dataset of server logs, appropriate preprocessing techniques are employed to 

cleanse and transform the raw data into a suitable format for analysis. The approach focuses on the 

identification of relevant features and the engineering of domain-specific attributes that capture the 

behavior of both legitimate and malicious requests. Through a comprehensive evaluation process, a range 

of machine learning algorithms suitable for classification tasks are explored. The chosen models undergo 

critical assessment using established evaluation metrics to quantify their performance in differentiating 

between malicious and benign DNS requests. 

 

Keywords: Domain Name System (DNS), machine learning, malicious requests, server log analysis, 

cybersecurity, classification algorithms. 
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Chapter 1: Introduction 

In today's digital landscape, the rapid growth of online activities has led to an increase in cyber threats 

and attacks. One of the prominent attack vectors involves the Domain Name System (DNS), which is a 

fundamental component of the internet infrastructure responsible for translating human-readable 

domain names into IP addresses. Malicious actors exploit DNS to carry out various cyber-attacks, including 

domain hijacking, phishing attacks, malware distribution, and command-and-control communication 

Detecting these malicious activities in DNS requests is of paramount importance to ensure the security 

and integrity of online services and networks. Traditional methods of manual analysis fall short due to the 

sheer volume of data generated by DNS requests and the evolving tactics of cyber attackers.  

In the digital realm, where communication occurs between devices through numerical IP addresses, DNS 

acts as an essential intermediary, facilitating easy access to websites and online resources. This 

hierarchical system functions much like a phone directory for the internet, enabling users to navigate the 

vast online landscape using familiar domain names, such as www.example.com, instead of numerical IP 

addresses. 

At its core, DNS operates through a series of servers that collaboratively manage the translation process. 

When a user enters a domain name in their web browser, the DNS system sequentially queries a hierarchy 

of servers, starting from local caches to authoritative name servers, until it obtains the corresponding IP 

address. This process is crucial for enabling seamless connectivity across the internet, allowing users to 

effortlessly access websites, send emails, and engage in various online activities. 

DNS serves as the backbone of the internet's addressing system, ensuring that users can navigate the 

digital landscape intuitively and efficiently. Given its indispensable role, any disruption or compromise to 

the DNS system can have far-reaching implications for online services, security, and privacy. Therefore, 

understanding and securing the DNS ecosystem against potential threats and attacks is of paramount 

importance to maintaining a safe and resilient online environment. 

Web servers play a critical role in the digital economy, providing a platform for businesses to interact with 

customers and conduct transactions. However, with this increased reliance on web servers comes an 

increased risk of cyber-attacks, with attackers seeking to exploit vulnerabilities in web applications to gain 

access to sensitive data or disrupt operations. Detection of anomalies in web traffic is an essential 

component for a web application for providing insights into potential threats and vulnerabilities. 

Traditionally, prevention of attacks in web traffic has relied on rule-based methods to prevent attacks on 

a web server. These methods are often limited by their static nature and lack of scalability. With the 

growing volume, complexity and dynamic nature of web attacks, there is a need for more sophisticated 

approaches that can handle large attacks and adapt to changing threats. This is where the integration of 

machine learning techniques becomes essential. 
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Many intrusion detection systems have been developed, however most of these systems focus on analysis 

of packets transferred at the transport layer. In this proposed research, the aim is to develop a machine 

learning-based approach for anomaly detection in web server logs, which is at application layer. The 

primary objective of this research is to investigate the effectiveness of machine learning algorithms for 

detecting anomalies and pattern recognition in web server logs and build a classifier model that can 

improve the accuracy and robustness of the detection system by evaluating the predictions of multiple 

classifiers.  

1.1 Problem Statement: 

The core challenge this research endeavors to address is the identification and classification of malicious 

DNS requests within a large amount of legitimate DNS traffic. Manual analysis and rule-based approaches, 

while once effective, are now struggling to contend with the subtleties of modern cyber-attack strategies, 

which often employ complex techniques to evade detection. Consequently, a more proactive, automated, 

and scalable approach is required to accurately differentiate between benign and malicious DNS requests. 

1.2 Research Objectives:  

The primary objective of this research is to design, implement, and evaluate a robust machine learning 

framework capable of identifying malicious DNS requests based on patterns, behaviors, and attributes 

extracted from server log data. The framework aims to empower organizations with an advanced tool to 

detect and counteract cyber threats proactively, enhancing their overall cybersecurity posture. 

1.3 Research Questions: 

This research seeks to address the following key questions: 

1. How can machine learning techniques be harnessed to effectively identify and classify malicious 

DNS requests from server log data? 

2. What are the most relevant features and attributes that enable accurate differentiation between 

legitimate and malicious DNS requests? 

3. How does the performance of various machine learning algorithms compare in the context of DNS 

request classification? 

1.4 Significance and Motivation: 

The significance of this research extends beyond conventional cybersecurity practices that often focus on 

analyzing network and transport layer activities. In many instances, the detection of anomalies and 

malicious activities involves scrutinizing packet-level information, a methodology that has proven 

effective at identifying external threats. However, this approach falls short in identifying threats and 

attacks that operate at the application layer—where requests and responses are processed by web 

applications. This is where our research assumes paramount importance. 

By concentrating on the application layer and leveraging the vast potential of machine learning, this 

research explores a novel avenue for identifying and categorizing malicious DNS requests. Unlike 
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traditional methods that often rely on dissecting packets, our approach harnesses the wealth of 

information stored within server logs. The application layer is a treasure trove of insights into user 

behavior, requests, and interactions, making it an invaluable source for uncovering nuanced threats that 

might evade detection at lower layers of the network stack. 

  

Moreover, the application layer's emphasis on user interactions renders it more closely aligned with the 

goals of modern cyber attackers, who seek to exploit vulnerabilities in web applications for financial gain, 

data theft, and disruption of services. By fortifying the application layer's defenses, our research aligns 

with the evolving threat landscape and provides organizations with a proactive means of countering 

sophisticated cyber threats. 

In summary, this research is motivated by the imperative to expand the realm of cybersecurity beyond 

traditional paradigms. By shifting the focus to the application layer and leveraging the capabilities of 

machine learning, proposed approach offers a new perspective on identifying malicious DNS requests—

adding a potent tool to the arsenal of defenders against the ever-evolving tactics of cyber attackers. 

1.5 Scope and Limitations: 

The scope of this research is centered on the identification of malicious DNS requests through the lens of 

machine learning and server log analysis. The research methodology encapsulates the collection, 

preprocessing, and analysis of DNS request data, leading to the development and evaluation of machine 

learning models capable of distinguishing between benign and malicious requests. The objective is to 

enhance the cybersecurity framework by addressing a specific yet critical aspect of cyber threats. 

However, it is important to acknowledge that server logs have a wealth of information beyond DNS 

requests alone. The server logs encompass a comprehensive record of user behavior, HTTP requests, 

potential SQL injection attacks, and many other ‘Application layer’ activities. While this research maintains 

a specific focus on DNS requests, the methodology and principles can indeed be extended to encompass 

a broader spectrum of security threats. 

The limitations of this research stem from its targeted scope. By concentrating solely on DNS requests, we 

inevitably omit the multifaceted landscape of application layer security challenges. While DNS request 

identification forms a crucial layer of defense against certain types of cyber threats, it is not a solution for 

all security vulnerabilities. Such as threats that operate at the application layer, including SQL injection 

attacks and sophisticated user behavior anomalies, warrant separate and dedicated research applications. 

In summary, while this research focuses on a distinctive approach to DNS request analysis, it is vital to 

recognize that the potential of server log analysis extends beyond DNS requests. Future research 

endeavors can explore the broader realm of application layer security, encompassing diverse threats and 

attack vectors that demand specialized attention. 
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1.6 Outline: 

The subsequent chapters of this dissertation will delve into the research methodology, data collection, 

preprocessing, exploratory data analysis, feature selection, model selection, evaluation, and the 

interpretation of results. The final chapters will provide conclusions, insights, and recommendations for 

future research. 

In summary, this introductory chapter lays the foundation for a comprehensive exploration of the 

utilization of machine learning in the identification of malicious DNS requests. The subsequent chapters 

will delve into the intricacies of the research process, culminating in a holistic understanding of the 

potential and limitations of this groundbreaking approach to cybersecurity.  
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Chapter 2: Literature Review  

2.1 Introduction: Pattern Recognition and Anomaly detection in server logs using machine learning 

techniques has been extensively studied. There are a wide range of algorithms and techniques proposed 

on server log analysis for various applications. In this section, we will review the literature on anomaly 

detection using machine learning techniques, identify the strengths and weaknesses of existing 

approaches, and highlight areas for future research. 

2.2 Concepts of DNS and Malicious Requests: 

The Domain Name System (DNS) stands as a cornerstone of modern internet functionality, translating 

human-readable domain names into numerical IP addresses that underpin online communication. This 

hierarchical, distributed system involves recursive and iterative queries across a network of servers to 

efficiently resolve domain names. DNS plays an integral role in enabling seamless navigation across the 

internet, underpinning services ranging from web browsing to email communication. 

However, alongside the utility of DNS lies a vulnerability exploited by malicious actors. As stated in this 

study by (Rajendran, 2018) Malicious DNS requests encompass a spectrum of activities, from domain 

hijacking to DNS cache poisoning and distributed denial-of-service (DDoS) attacks. These requests aim to 

manipulate DNS responses, redirect users to malicious websites, or compromise the integrity of data 

transmission. Detecting and thwarting such malicious requests is imperative to ensuring the security and 

stability of online services. 

Understanding malicious DNS requests necessitates a grasp of the intricacies of DNS protocol 

vulnerabilities, such as DNS amplification and tunneling. Moreover, the ability to distinguish between 

benign and malicious requests rests on analyzing patterns, query types, and behaviors that deviate from 

established norms. As a result, the study of malicious DNS requests involves not only a mastery of DNS 

functionality but also a nuanced comprehension of potential threat vectors and their characteristics. 

Against this backdrop of vulnerabilities and historical attacks, two significant security advancements 

emerge: Domain Name System Security Extensions (DNSSEC) and DNS firewall solutions. 

DNSSEC: Outlined in RFC 4033 (Rose, 2005), employs cryptographic digital signatures for data origin 

authentication and integrity enhancement. Although DNSSEC is widespread, only a minute percentage of 

domains implement it. While it thwarts spoofing and man-in-the-middle attacks, complexities in 

implementation and misconfigurations introduce vulnerabilities. 

The subsequent sections dive into the exploration of DNS and malicious requests, and research efforts, 

insights that underpin the development of effective detection and prevention strategies. 

DNS firewall: These solutions confront challenges posed by Domain Generation Algorithm (DGA)-based 

malicious activities (Plohmann, 2016). These algorithms, rooted in arithmetic, hash, wordlist, and 

permutation methods, create randomized domains, posing challenges for detection. 
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2.3 Previous Research in DNS Request Analysis and attack detection: 

In this published study conducted by (Jin, 2019) the proposed method constructs a DNS database from 

cached DNS data history logs. The analysis phase extracts features from original DNS query-response pairs, 

maps them to corresponding cached DNS records, and populates the DNS database. Incoming DNS query-

response pairs are analyzed in collaboration with the DNS database to determine whether to add received 

DNS records to the cache. False positives lead to identification and investigation of end clients based on 

historical DNS database logs. This study focuses on categorizing three specific attack patterns: legitimate 

cases, Kaminsky attacks, and DNS cache poisoning attacks from compromised authoritative DNS servers. 

Legitimate cases involve caching DNS records from legitimate responses. 

The study done by (Ming Li, 2021) recognizes that APT attacks involve the compromise of specific hosts 

within a network, leading to unique behavioral patterns. One notable contribution is the identification of 

characteristic patterns in DNS request sequences made by compromised hosts over time. These patterns 

serve as distinctive features for detecting compromised hosts, even in the absence of known malicious 

domain samples. By focusing on temporal patterns within DNS logs, the study introduces an innovative 

approach to APT detection. 

Additionally, the research contributes by conducting extensive evaluations on a real large-scale network 

environment, utilizing 70 days' worth of DNS request records. This practical validation demonstrates the 

effectiveness of their proposed approach in detecting APT compromises. Furthermore, the study validates 

its method using a public dataset, allowing for comparisons with existing detection methods. 

This paper (Shalaginov, 2016) discusses the challenges and complexities associated with detecting 

malware beaconing through DNS logs, emphasizing the importance of periodicity detection. Malicious 

software often communicates with Command and Control (C2) servers by sending DNS queries for C2 

server IP addresses through internal or external DNS servers. These DNS responses may contain encoded 

data, making it challenging to detect malware job-scheduling.  

• Unpredictable sleep times: Malware activation and beaconing times are not known in advance. 

• Multiple period usage: Attackers may change beaconing intervals over time. 

• Time variation: Attackers vary sleep times to avoid detection, mimicking legitimate 

communication patterns. 

• Noise: Benign applications, such as system updates, can produce regular beacons. 

• Multiple channels usage: Malware may shift between different C2 servers. 

• Benign beacon: Some legitimate applications generate regular beacons. 

• Needle in a haystack: Large enterprises generate massive log volumes, making it challenging to 

identify malicious activities quickly. 

• Near real-time detection: Identifying malicious beacon events as soon as possible is crucial, but it 

can be challenging due to the sheer volume of network traffic and the delay between malware 

launch and beaconing. 

This paper (Yan, 2020) introduces a novel system for Advanced Persistent Threat (APT) attack detection 

through DNS logs. Thorough log analysis yielded seven DNS features strongly correlated with suspicious 

APT activities. Leveraging recent advances in machine learning, a neural network model was developed 
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to find out the detailed relationship between DNS behavior and APT attacks. The model achieved 

compelling results, boasting a 96.8% recall and a 97.6% accuracy. The contributions of this work are 

manifold. Identification of seven DNS features spanning three categories and eight DNS features 

connected to APT activities. Introduction of three novel DNS behavior-related features, specifically 

centered on the interaction between DNS request and response messages, as well as the temporal 

attributes of DNS logs. Development of a robust system with the help of deep learning for detecting 

malicious DNS behavior within APT attacks and generating a feature set. 

One of the most common approaches to anomaly detection using machine learning is based on clustering 

algorithms one such technique is proposed in (Juvonen, 2012) . Clustering algorithms group data points 

together based on their similarity, and anomalies are identified as data points that do not belong to any 

of the clusters. K-means and DBSCAN are two examples of clustering algorithms that have been used for 

anomaly detection in various applications. The strengths of clustering-based anomaly detection include 

their ability to identify previously unknown anomalies and their ability to handle large datasets. However, 

clustering algorithms can be sensitive to the choice of hyper-parameters and may require manual tuning, 

which can be time-consuming and require expert knowledge. 

Another approach to anomaly detection using machine learning is based on classification algorithms. 

Classification algorithms learn a model based on labelled data and use this model to classify new data 

points as either normal or anomalous. Decision trees, support vector machines, and Random Forest are 

examples of classification algorithms that have been used for anomaly detection. There is comparison 

study done by using different classification algorithms in (Pham, 2016). The strengths of classification-

based anomaly detection include their ability to handle high-dimensional data and their ability to detect 

anomalies in real-time. However, classification algorithms require labeled data for training, which can be 

difficult to obtain in some applications. Moreover, classification algorithms may struggle to identify 

previously unknown anomalies that do not fit into the learned model. 

A third approach to anomaly detection using machine learning is based on Classification using deep 

learning algorithms such as CNNs and RNNs. DeepLog (Du, 2017) is one such model built on deep learning 

algorithm. However deep learning models need training on large amount of normal data (non-anomalous 

server logs) in order to identify anomalies in new logs.   Deep learning based algorithms offer several 

advantages in terms of their ability to handle high-dimensional data, identify anomalies, and handle noisy 

data, this is evident in the study done in (Zhang, 2022). 

Clustering-based, classification-based, and deep learning based approaches all have their strengths and 

weaknesses, and the choice of approach depends on the specific requirements of the application. Future 

research should focus on developing more efficient and scalable algorithms, addressing the challenge of 

detecting previously unknown anomalies, and exploring the use of ensemble methods for anomaly 

detection that can effectively handle large-scale web server logs. 

2.4 Challenges and Gaps in the Literature:  

A notable gap and challenge is the limited focus on real-time anomaly detection in the context of DNS log 

analysis. While various studies discuss the identification of APTs and malicious behavior through DNS logs, 
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many of these methods rely on historical data or batch processing, which may not be suitable for timely 

threat mitigation. 

Addressing this gap is essential because advanced threats often require rapid responses to prevent 

significant damage. Developing real-time anomaly detection techniques, potentially incorporating 

Machine-Learning models such as CNNs and RNNs, could significantly enhance network security by 

identifying suspicious DNS behaviors as they occur. However, this approach may present challenges 

related to processing speed, scalability, and handling noisy data in real-time scenarios. 

Future research should aim to bridge this gap by exploring and developing effective real-time DNS 

anomaly detection methods, considering the challenges of handling the high data volume and ensuring 

timely threat identification and response. This would contribute to strengthening network security against 

APTs and other emerging threats. 
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Chapter 3: Research Methodology 

3.1 Research Design and Approach: 

In this research, a systematic approach is employed to investigate and address the complex challenges 

associated with "Identifying malicious DNS requests from server log analysis using machine learning." The 

research methodology follows a well-established CRISP-DM (Cross-Industry Standard Process for Data 

Mining) framework originally proposed by (Shearer, Fall 2000), which provides a structured and 

comprehensive guideline for conducting data-driven research and analysis for data mining. 

CRISP-DM emerges as an ideal choice for this investigation due to its versatility and applicability across 

diverse domains. It furnishes a systematic roadmap for every phase of the study, spanning from data 

collection to model evaluation, effectively guiding the exploration of the multifaceted domain of malicious 

DNS request detection. 

By adhering to the CRISP-DM framework, this research ensures methodological rigor and the potential for 

replication. It promotes efficient communication and synergy among research team members, facilitating 

the harnessing of collective expertise to tackle the multifarious dimensions of malicious DNS request 

identification. 

This approach seamlessly aligns with the research objectives of unveiling hidden patterns within server 

logs, analyzing them with machine learning techniques, and subsequently identifying malicious DNS 

requests effectively. Through systematic adherence to the CRISP-DM framework, this research aims to 

contribute significantly to enhancing our comprehension of malicious DNS request detection and 

fortifying cybersecurity measures. 

3.2 Data Collection (Server Log Analysis): 

3.2.1 Data Source and Description:  

The dataset used in this research originates from publicly available DNS logs published by (Magalhães, 

2021), encompassing both malicious and non-malicious domain names. It was meticulously curated and 

constructed from scratch to serve as a robust foundation for the application of supervised machine 

learning techniques in the classification of malicious and non-malicious domain names. To generate this 

dataset, comprehensive features were extracted from the domain names, including metrics like domain 

name entropy, length, and the presence of unusual characters. In addition, various other attributes such 

as domain creation date, Internet Protocol (IP) details, open ports, and geolocation information were 

acquired through data enrichment processes, specifically Open Source Intelligence (OSINT). 

The categorization of domain names into their respective classes was determined based on the data 

source, distinguishing between those sourced from malicious DNS log files and those originating from 

non-malicious DNS log files. Notably, this dataset demonstrates a balanced composition, with 

approximately 90,000 domain names evenly distributed, comprising 50% non-malicious and 50% 

malicious domain names. This dataset stands as a valuable resource for the application of machine 
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learning algorithms, enabling the development of models capable of discerning between malicious and 

non-malicious domain names with enhanced accuracy and efficiency. 

3.3 Data Preprocessing: 

Data preprocessing and Transformation stages are essential for cleaning, structuring, and enhancing the 
raw data, ensuring that data is in a suitable form for model building and analysis. In this section, we will 
explore these data preprocessing and transformation steps in detail, providing comprehensive insights in 
to the data. 

3.3.1 Handling Missing Values: 

Missing data is a common issue encountered when working with real-world datasets. In the dataset, 
missing values were observed in specific columns such as 'CountryCode,' 'RegisteredCountry,' and 
'RegisteredOrg.' Dealing with missing values is crucial, as they can lead to biased results and hinder the 
performance of machine learning models. In this context, a pragmatic approach was adopted: the columns 
containing missing values were removed. This decision was made because these columns were deemed 
non-critical for the research question, and the missing data in these columns did not provide substantial 
value for the analysis. 

Moreover, a small percentage of rows in the dataset contained missing values. While this percentage was 
relatively minor, it's essential to address missing values to maintain data integrity. Therefore, these 
incomplete records were removed from the dataset. By doing so, data consistency and quality were 
upheld, reducing the potential for errors in subsequent analyses. Eliminating rows with missing values is 
a standard practice when the proportion of missing data is minimal and does not significantly impact the 
dataset's overall quality or size. 

3.3.2 Label Encoding: 

Machine learning algorithms primarily operate with numerical data. However, the dataset initially 
included non-numerical data, such as categorical features (columns with string data type). To facilitate 
the use of these features in machine learning models, a label encoding technique was employed. Label 
encoding involves assigning a unique numerical label to each category or class within a categorical feature. 
This transformation ensures that the algorithms can effectively process and learn from the data. 

3.3.3 Min-Max Normalization: 

After encoding the dataset into numerical values, it was essential to address potential discrepancies in 
the scales of different features. Features with significantly different scales can negatively impact the 
performance of machine learning algorithms, particularly distance-based models. To mitigate this issue, 
min-max normalization was applied. This technique scales features to a specific range, typically between 
0 and 1. Normalizing the data in this manner ensures that all features have a consistent scale, promoting 
fair treatment of each feature during model training. 
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3.3.4 Standard Scaling: 

Another normalization technique applied in the data preprocessing pipeline was standard scaling, also 
known as Z-score normalization. Standard scaling transforms features to have a mean of 0 and a standard 
deviation of 1. This process standardizes the data and centers it around zero. Standard scaling is 
particularly useful when working with algorithms that are sensitive to feature scales. By standardizing the 
data, you ensure that all features are treated equally in terms of their distribution, preventing any single 
feature from dominating the modeling process. 

3.3.5 Principal Component Analysis (PCA): 

One of the challenges when dealing with datasets containing a large number of features is high 
dimensionality. High dimensionality can lead to increased computational complexity and may even result 
in overfitting, where a model performs well on training data but poorly on unseen data. To address this 
challenge, Principal Component Analysis (PCA) was employed. PCA is a dimensionality reduction 
technique that projects the original dataset into a lower-dimensional space while preserving as much 
variance as possible. It achieves this by identifying the principal components of the data, which are linear 
combinations of the original features. These principal components capture the most critical information 
in the data while reducing its dimensionality. 

3.3.6 Summary: 

In summary, data preprocessing and transformation are fundamental steps in the data mining and 
machine learning pipeline, ensuring that the dataset is appropriately prepared for analysis. Handling 
missing values, label encoding, normalization through techniques like min-max scaling and standard 
scaling, and dimensionality reduction using PCA are integral components of this process. By meticulously 
preparing and transforming the data, the foundation is set for more accurate and reliable machine 
learning models, ultimately enhancing the effectiveness for identifying malicious DNS requests from 
server log analysis using machine learning. 

3.4 Exploratory Data Analysis: 

3.4.1 Basic Statistics: Basic statistics serve as the foundation of EDA. It involves calculating fundamental 

statistical metrics for each feature in the dataset, such as mean, median, standard deviation, minimum, 
and maximum values. These statistics provide an initial understanding of the data's central tendencies, 
spread, and overall distribution. Basic statistics help identify potential outliers and assess data quality. 

3.4.2 Univariate Analysis: Univariate analysis is the examination of individual features in isolation. It 

focuses on understanding the distribution, central tendencies, and variability of each feature. This analysis 
typically involves creating visualizations like histograms, box plots, and density plots to visualize the data's 
shape and characteristics. Univariate analysis helps identify outliers and assess the presence of skewed or 
non-normal distributions in the data. 
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Distribution of Target Variable: The dataset is evenly split between malicious and non-malicious     
categories, with an equal number of rows (45k) in each.

 

Figure 1 : Distribution of Target Variable 

 

Distribution of DNSRecordType: There are very few ’MX’ type records

 

Figure 2: Distribution of DNSRecordType 

3.4.3 Bivariate Analysis: Bivariate analysis explores relationships between pairs of variables, with a 

primary focus on understanding how the target variable interacts with other features. In your context, 
you mentioned visualizing relevant boolean columns with the target variable. This step is essential for 
measuring the skewness of the distribution concerning the target variable. Visualizations such as bar plots 
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or stacked bar plots can be used to display the distribution of boolean variables concerning the target. 
This helps assess how certain features may influence the likelihood of a DNS request being malicious. 

Distribution of feature CommonPorts with Target variable 

 

Figure 3 : Distribution of feature CommonPorts with Target variable 

In the case of the ‘CommonPorts’ feature, the data distribution is notably biased towards the non-
malicious category. 
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Distribution of feature TXTDnsResponse with Target variable 

 

Figure 4: Distribution of feature TXTDnsResponse 

 

Figure 5: Distribution of feature HasDkimInfo with Target variable 

In this particular feature ‘HasDkimInfo’ the data distribution is heavily skewed towards non-malicious 
category 
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3.4.4 Correlation Matrix: Building a correlation matrix is a vital step in understanding the relationships 

between numerical variables in your dataset. This matrix provides a numerical representation of the 
degree and direction of association between pairs of features. In your case, it can reveal whether there 
are any significant correlations between variables related to DNS requests and whether these correlations 
are positive or negative. A correlation matrix aids in identifying potential multi collinearity, which can 
impact the model interpretability. 

 

Figure 6: Correlation Heat map 

 

From the correlation heat map, it is evident that some features exhibit strong correlations with each other, 
while others show significant correlations with the target variable. 
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3.5 Feature Selection and Engineering: 

The primary research objective at hand is the precise identification of the most relevant features and 
attributes facilitating the accurate differentiation between legitimate and malicious DNS requests. In this 
section, we delve into the comprehensive process of feature selection and engineering, a pivotal step in 
crafting an effective model for identifying malicious DNS requests from server log analysis. 

3.5.1 Feature Importance: 

To prioritize features that exhibit the highest discriminative power between legitimate and malicious DNS 
requests, the Extra Trees Classifier algorithm is employed. This algorithm evaluates the importance of 
each feature and ranks them accordingly. From the large number of attributes, the top 20 features, 
contributing most significantly to the classification task, are selected. This step focuses the model's 
attention on the most informative aspects of DNS request data, thereby enhancing accuracy and 
efficiency. 

3.5.2 Recursive Feature Elimination (RFE): 

To extract the most important feature set to its most essential components, the Recursive Feature 
Elimination (RFE) technique is employed. RFE operates by iteratively fitting a logistic regression model and 
identifying the feature with the lowest importance. This feature is then removed from consideration, and 
the process is repeated until the desired feature count of 20 is achieved. RFE effectively sifts through the 
feature set, retaining only those attributes that contribute significantly to the model's predictive capacity. 
This eliminates irrelevant or redundant features, streamlining the model and reducing the risk of 
overfitting. 

3.5.3 PCA Transformation: 

Principal Component Analysis (PCA) offers a robust method for transforming the feature space from 
higher dimensions to a lower-dimensional representation. While the initial feature set is comprehensive, 
it may contain multicollinearity issues or excessive dimensionality that could hinder model performance. 
PCA addresses these concerns by identifying orthogonal axes, or principal components, along which the 
data exhibits the most significant variation. By retaining a selected number of these principal components, 
dimensionality is reduced without sacrificing crucial information. This transformation expedites 
computation and enhances the interpretability of the model. 

The importance of feature selection and engineering cannot be overstated in the context of this research. 
The objective is to differentiate between benign and malicious DNS requests, ensuring that the model is 
trained on the most pertinent attributes. Selecting and refining these features significantly contributes to 
model efficiency, interpretability, and generalization. 

In summary, the approach to feature selection and engineering encompasses multiple stages, each 
designed to enhance the discriminatory power of the model. By focusing on the top 20 features through 
Extra Trees Classifier and RFE, the attributes most relevant to the research objective are pin pointed. 
Additionally, PCA transformation enables navigation of the challenges of high-dimensional data, ensuring 
that the model is both effective and efficient. These steps collectively pave the way for a robust machine 
learning model capable of accurately identifying malicious DNS requests within server log data. 
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3.6 Data Modelling:  

In the Data Modeling phase, the primary objective is to build and evaluate machine learning models that 
can effectively classify DNS requests as either benign or malicious. This phase typically involves several 
key steps: 

3.6.1 Model Selection: The first step in Data Modeling is the selection of appropriate machine learning 

algorithms. In our case, we have explored a range of classification algorithms, including Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression, Random Forest, Decision Tree, Naive 
Bayes, and Gradient Boosting. Each algorithm has its unique characteristics, and their suitability depends 
on the dataset and problem at hand. 

3.6.2 Data Splitting: To assess the performance of the selected models, the dataset is divided into two 

subsets: a training set and a testing set. The training set is used to train the models, while the testing set 
is used to evaluate their performance. Cross-validation techniques, such as k-fold cross-validation, has 
also been employed to ensure robust model assessment. 

3.6.3 Model Training: During this step, the selected machine learning algorithms are trained on the 

training dataset. The models learn the underlying patterns and relationships within the data, enabling 
them to make predictions on unseen DNS requests. 

3.6.4 Hyperparameter Tuning: Many machine learning algorithms have hyperparameters that control 

their behavior. Tuning these hyper parameters is a crucial part of optimizing model performance. 
Techniques like grid search or random search can be used to find the best combination of hyper 
parameters for each algorithm. 

3.6.5 Model Evaluation: Once the models are trained, they are evaluated using the testing dataset. 

Common evaluation metrics for classification tasks include accuracy, precision, recall, F1-score, and area 
under the receiver operating characteristic curve (AUC-ROC). These metrics provide insights into how well 
the models can differentiate between benign and malicious DNS requests. 

3.6.6 Ensemble Methods: Ensemble methods, such as bagging and boosting, may be employed to 

combine the predictions of multiple base models. Random Forest and Gradient Boosting are examples of 
ensemble algorithms that have been considered in this phase. Ensemble methods can often improve 
model performance by reducing overfitting and increasing predictive accuracy. 

3.6.7 Model Selection: Based on the evaluation results, one or more models are selected as candidates 

for deployment. The choice of the final model(s) depends on the desired trade-offs between various 
performance metrics, computational resources, and interpretability. 

3.6.8 Model Interpretation: In addition to selecting the best-performing models, it is essential to 

understand how these models arrive at their predictions. Interpretability techniques, such as feature 
importance analysis and visualization of decision boundaries, can provide insights into the factors that 
influence a DNS request's classification. 
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3.7 Classification algorithms 

Below are the classification algorithms employed in this research, along with brief explanations of their 
operational principles and reasons for their applicability in classification tasks. 

3.7.1 Random Forest: 

Random Forest is an ensemble learning method that leverages the power of decision trees for 
classification. It combines multiple decision trees to make more robust and accurate predictions. In the 
context of identifying malicious DNS requests, Random Forest offers several advantages. 

Random Forest operates by building a multitude of decision trees during the training phase. Each tree is 
trained on a bootstrapped sample of the dataset, and at each node, it selects a random subset of features 
for splitting. The final prediction is made by aggregating the results of individual trees, often through 
voting. 

Random Forest excels at handling high-dimensional data, making it suitable for the DNS dataset with 
numerous features. It is also robust to overfitting, as it averages out the idiosyncrasies of individual 
decision trees. Moreover, it provides feature importance scores, allowing for a deeper understanding of 
the relevance of each attribute in the classification task. 

3.7.2 K-Nearest Neighbors (KNN): 

K-Nearest Neighbors (KNN) is a straightforward yet effective classification algorithm. It operates on the 
principle of similarity, where data points are classified based on the class of their nearest neighbors. In 
other words, if a majority of a data point's k-nearest neighbors belong to a specific class, the data point is 
assigned to that class. 

KNN's simplicity is its strength, making it a suitable choice for identifying malicious DNS requests. It works 
well when the decision boundaries between classes are not linear or well-defined. KNN is non-parametric, 
meaning it does not make assumptions about the underlying data distribution, making it versatile for 
various scenarios. 

In the context of DNS request classification, KNN calculates distances between data points, often using 
Euclidean distance. The choice of the value of k, representing the number of neighbors to consider, is 
crucial. A small k may lead to noisy results, while a large k may smooth out decision boundaries. Finding 
the optimal k is part of the model tuning process. 

3.7.3 Gradient Boosting: 

Gradient Boosting is an ensemble learning method that combines multiple weak learners, typically 
decision trees, to create a robust classifier. It is known for its high predictive accuracy and adaptability to 
various data types and distributions. 

Gradient Boosting works by iteratively training decision trees, with each subsequent tree aiming to correct 
the errors of the previous ones. This process continues until the model converges to a strong predictive 
performance. 
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In DNS request classification, Gradient Boosting's ability to handle complex relationships between 
features and the target variable is invaluable. It excels in capturing nuances within the data, making it an 
excellent choice when precise identification of malicious requests is essential. 

In conclusion, each of the classification algorithms mentioned has its unique strengths and characteristics, 
making them suitable for identifying malicious DNS requests from server log analysis. The choice of 
algorithm depends on the specific characteristics of the dataset and the desired trade-offs between 
interpretability, accuracy, and computational complexity. 

3.7.4 Logistic Regression: 

Logistic Regression is a fundamental classification algorithm that models the probability of an instance 
belonging to a particular class. It is especially useful when dealing with binary classification problems, such 
as identifying malicious DNS requests. 

Logistic Regression works by applying the logistic (sigmoid) function to a linear combination of input 
features. This transformation maps the output to the range [0, 1], interpreted as the probability of 
belonging to the positive class. By setting an appropriate threshold (usually 0.5), instances are classified 
into one of the two classes. 

Logistic Regression's simplicity and interpretability make it a valuable choice for DNS request 
classification. It provides insight into the relationship between input features and the log-odds of the 
outcome. Moreover, it can handle high-dimensional data effectively, which is essential for the DNS 
dataset with numerous features. 

3.7.5 Decision Tree: 

Decision Trees are intuitive and interpretable classification algorithms that recursively partition the 
dataset into subsets based on feature conditions. In the context of identifying malicious DNS requests, 
Decision Trees are valuable for their transparency and ease of interpretation. 

A Decision Tree begins with the entire dataset and selects the most informative feature to split the data. 
This process continues recursively until a stopping criterion is met, such as a maximum depth or minimum 
samples per leaf. Each leaf node represents a class label. 

Decision Trees are well-suited for DNS request classification because they can handle both numerical and 
categorical data, which is prevalent in this dataset. Their hierarchical structure allows for the visualization 
of the decision-making process, aiding in the understanding of why certain DNS requests are classified as 
malicious or benign. 

3.7.6 Naive Bayes: 

Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem, with the "naive" 
assumption of feature independence. While this assumption may not hold in all cases, Naive Bayes 
remains a useful tool for DNS request classification. 
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Naive Bayes works by calculating the probability of an instance belonging to a class based on the joint 
probabilities of its features. It selects the class with the highest probability as the prediction. Despite its 
simplicity and the naive independence assumption, Naive Bayes often performs surprisingly well, 
especially with high-dimensional data. 

In the context of DNS request classification, Naive Bayes can efficiently handle the numerous features 
characterizing each request. It is particularly useful when computational resources are limited, as it 
requires minimal model training and prediction times. 

3.7.7 Support Vector Machine (SVM): 

The Support Vector Machine (SVM) is a powerful classification algorithm used extensively in various 
domains, including cybersecurity. SVM operates on the principle of finding an optimal hyperplane that 
best separates data points belonging to different classes. In the context of identifying malicious DNS 
requests from server log analysis with the current data set, SVM proves least effective. 

SVM works by mapping data points into a higher-dimensional space, where it strives to create a 
hyperplane that maximizes the margin between different classes. This margin represents the distance 
between the hyperplane and the nearest data points of each class, ensuring robust separation. The choice 
of kernel function is crucial in SVM, as it determines the transformation of data into this higher-
dimensional space. Common kernels include linear, polynomial, and radial basis function (RBF). 

SVM is particularly suited for this task due to its ability to handle high-dimensional data, making it ideal 
for the feature-rich DNS request dataset. Its strength lies in its ability to find complex decision boundaries 
that other algorithms may struggle with. SVM's flexibility in choosing the appropriate kernel function 
allows for fine-tuning to achieve optimal classification results. 

3.7.8 Auto ML (Rapid Miner): 

In addition to the manual modeling with various classification algorithms, an AutoML (Automated 
Machine Learning) tool called RapidMiner was employed in this research. RapidMiner is a robust and user-
friendly platform designed to automate the end-to-end process of machine learning, including data 
preprocessing, model selection, hyperparameter tuning, and evaluation. 

RapidMiner operates by systematically testing a range of machine learning algorithms and configurations 
to identify the most suitable model for the given dataset and problem. This tool streamlines the modeling 
process by minimizing the need for manual intervention, making it particularly advantageous for handling 
complex datasets with numerous features. Furthermore, RapidMiner provides insightful visualizations 
and performance metrics, facilitating the comparison of different models and their suitability for the 
classification task. 

The utilization of RapidMiner in this study allowed for a comprehensive exploration of various 
classification algorithms and configurations, saving time and resources while ensuring that the most 
effective models were identified. This approach not only contributes to the accuracy and efficiency of the 
research but also aligns with the principles of data-driven decision-making in the field of machine learning. 
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Model Accuracy 
Standard 
Deviation Gains 

Total 
Time 

Training Time 
(1,000 Rows) 

Scoring Time 
(1,000 Rows) 

Fast Large 
Margin 0.85333 4.10E-04 18046 1322332 53.59134508 220.9457952 

Logistic 
Regression 0.85321 0.001352174 18030 502211 9.346419808 148.7842962 

Random 
Forest 0.85216 0.001053529 12540 661003 74.4 1397.6 

Decision Tree 0.85110 0.001237716 17932 513016 6.93731876 393.7374526 

Generalized 
Linear Model 0.85091 6.47E-04 17922 407805 7.249609636 131.3294669 

Gradient 
Boosted Trees 0.85059 0.001140533 12484 649887 19.168 173.6 

Naive Bayes 0.85024 9.05E-04 17888 484400 5.453937096 264.4713362 

Deep Learning 0.55507 7.40E-04 2772 627986 274.615213 202.7102387 

 

Figure 7: Results from Auto modelling using Rapid Miner 

It is notable that most algorithms delivered an accuracy rate hovering around 85%, indicating their 

consistent ability to effectively distinguish between malicious and non-malicious DNS requests. This 

uniformity in performance underscores the robustness of the models, irrespective of whether they were 

manually configured or automatically generated using RapidMiner. 

These findings reinforce the reliability of the selected classification algorithms and highlight the potential 

for leveraging automated modeling tools to streamline and expedite the model development process 

while maintaining high levels of accuracy. 
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3.7.9 Data Mining Pipeline 
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Chapter 4: Evaluation and Results 

4.1 Model Evaluation Metrics 

In this section, we delve into the various metrics employed to assess the performance of our classification 

models. The objective was to identify the most effective model for distinguishing between malicious and 

non-malicious DNS requests. The following evaluation metrics were utilized: 

Accuracy: This metric measures the overall correctness of the model's predictions, providing an indication 

of its reliability. 

Precision: Precision quantifies the proportion of true positive predictions out of all positive predictions 

made by the model. In the context of our research, it reflects how accurately the model identifies 

malicious DNS requests. 

Recall (Sensitivity): Recall assesses the model's ability to correctly identify all actual positive instances (i.e., 

malicious DNS requests). It helps gauge the model's sensitivity to detecting malicious activities. 

F1-Score: The F1-Score is the harmonic mean of precision and recall. It provides a balanced measure of a 

model's performance, considering both false positives and false negatives. 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The ROC curve illustrates the model's 

trade-off between true positive rate and false positive rate at various thresholds. AUC-ROC quantifies the 

model's capability to distinguish between classes. 

Below are the outcomes from the classification reports produced by various classification algorithms 

employed in this research. 

4.2 Classification reports: 

4.2.1 Random Forest: 

Random Forest demonstrated the highest level of accuracy at 0.89. The corresponding classification 
report for Random Forest is as follows: 
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Random Forest Accuracy: 0.890958435571418  

Random Forest Report:  

  precision  Recall  f1-score  support  

0 0.84 0.96  0.90 13423 

1 0.95    0.82  0.88  13475 

accuracy      0.89  26898 

 macro avg 0.90  0.89  0.89 26898 

 weighted avg 0.90  0.89  0.89  26898 

  

Overall accuracy achieved by Random Forest: 0.89, based on a total support of 26898 instances. 

The macro average for precision, recall, and F1-score is 0.90, 0.89, and 0.89, respectively, for the entire 
dataset, with a total support of 26898 instances. 

The weighted average for precision, recall, and F1-score is 0.90, 0.89, and 0.89, respectively, also based 
on a total support of 26898 instances." 

Figure 8: ROC Curve for Random Forest 

  

4.2.2 KNN: 

KNN achieved an accuracy of 0.8745, demonstrating its ability to make accurate classifications. In the 
classification report, KNN exhibited balanced precision, recall, and F1-scores for both malicious (Class 1) 
and non-malicious (Class 0) categories. This balanced performance suggests that KNN is effective in 
identifying both types of DNS requests. 

KNN Accuracy: 0.8744888095769202 
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KNN Report:  

  precision  Recall  f1-score  support  

0 0.83 0.93  0.88 13423 

1 0.93    0.82  0.87  13475 

accuracy      0.87  26898 

 macro avg 0.88  0.87  0.87 26898 

 weighted avg 0.88  0.87  0.87  26898 

 

 

Gradient boosting: Gradient Boosting achieved an accuracy of 0.8663, showcasing its proficiency in 

classification tasks. The classification report for Gradient Boosting revealed balanced precision, recall, and 

F1-scores for both classes.  

Gradient boosting Accuracy: 0.8663469402929586 

Gradient boosting Report: 

  precision  Recall  f1-score  support  

0 0.84 0.91  0.87 13423 

1 0.90    0.82  0.86  13475 

accuracy      0.87  26898 

 macro avg 0.87  0.87  0.87 26898 

 weighted avg 0.87  0.87  0.87  26898 
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4.2.3 Logistic Regression 

Logistic Regression attained an accuracy of 0.8578, signifying its competence in classification tasks. The 

classification report for Logistic Regression exhibited well-balanced precision, recall, and F1-scores for 

both malicious and non-malicious categories.  

Logistic Regression Accuracy: 0.857833296155848 

Logistic Regression Report: 

 

  precision  Recall  f1-score  
support  

0 0.83 0.90  0.86 13423 

1 0.89    0.81  0.85  13475 

accuracy      0.86  26898 

 macro avg 0.86  0.86  0.86 26898 

 weighted avg 0.86  0.86  0.86  26898 

 

4.2.4 Decision Tree 

The Decision Tree model achieved an accuracy of 0.8484, indicating its effectiveness in classification tasks. 

The classification report showed balanced precision, recall, and F1-scores for both malicious and non-

malicious DNS requests 

Decision Tree Accuracy: 0.8483530374005502 

Decision Tree  Report: 

  precision  Recall  f1-score  
support  

0 0.86 0.84  0.85 13423 
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1 0.84    0.86  0.85  13475 

accuracy      0.86  26898 

 macro avg 0.85  0.85  0.85 26898 

 weighted avg 0.85  0.85  0.85 26898 

 

4.2.5 Naive Bayes 

Naive Bayes demonstrated an accuracy of 0.8443, highlighting its proficiency in classification. In the 

classification report, Naive Bayes exhibited balanced precision, recall, and F1-scores for both malicious 

and non-malicious categories. This equilibrium in performance suggests that Naive Bayes is well-suited 

for identifying both types of DNS requests. 

Naive Bayes Accuracy: 0.8443378689865417 

Naive Bayes Report: 

  precision  Recall  f1-score  
support  

0 0.82 0.88  0.85 13423 

1 0.87    0.81 0.84  13475 

accuracy      0.84  26898 

 macro avg 0.85  0.85 0.84 26898 

 weighted avg 0.85  0.85 0.84 26898 

 

4.2.6 SVM 

The Support Vector Machine (SVM) classification model achieved an accuracy of 0.7157 in distinguishing 

between malicious and non-malicious DNS requests. SVM has demonstrated the least level of accuracy 

among the classification algorithms 
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SVM Accuracy: 0.7157037697970109 

SVM Report: 

  

  precision  Recall  f1-score  
support  

0 0.72 0.70 0.71 13423 

1 0.71    0.73 0.72 13475 

accuracy      0.72  26898 

 macro avg 0.72  0.72 0.72 26898 

 weighted avg 0.72  0.72 0.72 26898 
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Chapter 5: Conclusion  

In conclusion, this research has delved into the critical domain of identifying malicious DNS requests 

through server log analysis using machine learning techniques. The findings and insights obtained from 

this study shed light on the effectiveness of various classification algorithms in enhancing cybersecurity 

measures. Key takeaways from this research include: 

• Algorithm Performance: The evaluation of different classification algorithms revealed that 

Random Forest exhibited the highest accuracy of 0.89, indicating its capability to effectively 

differentiate between malicious and non-malicious DNS requests. The choice of algorithm may 

depend on specific needs, considering the balance between precision and recall. 

• Feature Engineering: Feature engineering played a pivotal role in model performance. The 

identification and selection of relevant features were instrumental in the accuracy of the 

classification models. Feature importance analysis provided valuable insights into the 

contribution of each feature to the predictive power of the models. 

• Future Enhancements: The research suggests several avenues for future work. Firstly, the 

integration of real-time DNS log analysis and continuous model retraining can enhance the 

system's ability to adapt to evolving threats. Additionally, exploring ensemble methods and deep 

learning approaches may further improve the accuracy of malicious DNS request detection. 
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Chapter 6: Future Work 

Building upon the foundation laid by this research, future work in the field of identifying malicious DNS 

requests offers exciting opportunities: 

• Real-time Detection: Developing systems capable of real-time DNS log analysis and immediate 

threat response is a critical step towards proactive cybersecurity. Investigating streaming data 

processing and online learning algorithms can aid in achieving this goal. 

• Ensemble Methods: Exploring ensemble methods that combine the strengths of multiple 

classification algorithms can enhance overall model performance. Techniques like stacking and 

boosting may provide improvements in precision and recall. 

• Deep Learning: Investigating deep learning architectures, such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), for DNS request analysis can leverage the power 

of neural networks to capture complex patterns and behaviors in network traffic. 

• Anomaly Detection: Extending the research to anomaly detection in DNS traffic can help identify 

novel and previously unseen threats. Unsupervised learning methods and anomaly detection 

algorithms can be explored for this purpose. 

• Large-Scale Deployment: Scaling up the models and systems to handle the demands of large-scale 

networks and cloud environments is essential. Deployment considerations, such as load balancing 

and distributed computing, need to be addressed. 
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Appendix 

 

(Data analyzed from DNS logs containing host-based, web-based and numerical features) 
34 Features  
90K records  (two classes) 
 
 
 
Table 1: Dataset features with description, data types and default value 
 

      Data Type   

  Feature Description Text Boolean Integer Decimal Enumerate 
Default 
Value 

1 Domain 
Baseline DNS used 
to enrich data 
(derive features) 

X         N/A 

2 DNSRecordType 
DNS record type 
queried 

X         N/A 

3 MXDnsResponse 
The response from 
a DNS request for 
the record type MX 

  X       FALSE 

4 TXTDnsResponse 
The response from 
a DNS request for 
the record type TXT 

  X       FALSE 

5 HasSPFInfo 

If the DNS response 
has Sender Policy 
Framework 
attribute 

  X       FALSE 

6 HasDkimInfo 

If the DNS response 
has Domain Keys 
Identified Email 
attribute 

  X       FALSE 

7 HasDmarcInfo 

If the DNS response 
has Domain-Based 
Message 
Authentication 

  X       FALSE 

8 IP 
The IP for the 
domain 

X         null 

9 DomainInAlexaDB 
If the domain it’s 
registered in the 
Alexa DB 

  X       FALSE 
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10 CommonPorts 

If the domain it’s 
available for 
common ports (80, 
443, 21, 22, 23, 25, 
53, 110, 143, 161, 
445, 465, 587, 993, 
995, 3306, 3389, 
7547, 8080, 8888) 

  X       FALSE 

11 CountryCode 
The country code 
associated with the 
IP of the domain 

X         null 

12 RegisteredCountryCode 

The country code 
defined in the 
domain registration 
process (WHOIS) 

X         null 

13 CreationDate 
The creation date 
of the domain 
(WHOIS) 

        X 0 

14 LastUpdateDate 
The last update 
date of the domain 
(WHOIS) 

        X 0 

15 ASN 
The Autonomous 
System Number for 
the domain 

    X     -1 

16 HttpResponseCode 
The HTTP/HTTPS 
response code for 
the domain 

        X 0 

17 RegisteredOrg 

The organization 
name associated 
with the domain 
(WHOIS) 

X         null 

18 SubdomainNumber 
The number of sub-
domains for the 
domain 

    X     0 

19 Entropy 
The Shannon 
Entropy of the 
domain name 

    X     0 

20 EntropyOfSubDomains 
The mean value of 
the entropy for the 
sub-domains 

    X     0 

21 StrangeCharacters 

The number of 
characters different 
from [a-zA-Z] and 
considering the 
existence 
maximum of two 

    X     0 
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numeric integer 
values 

22 TLD 
The Top Level 
Domain for the 
domain 

X         null 

23 IpReputation 
The result of the 
blocklisted search 
for the IP 

  X       FALSE 

24 DomainReputation 
The result of the 
blocklisted search 
for the domain 

  X       FALSE 

25 ConsoantRatio 

The ratio of 
consonant 
characters in the 
domain 

      X   0 

26 NumericRatio 
The ratio of 
numeric characters 
in the domain 

      X   0 

27 SpecialCharRatio 
The ratio of special 
characters in the 
domain 

      X   0 

28 VowelRatio 
The ratio of vowel 
characters in the 
domain 

      X   0 

29 ConsoantSequence 

The maximum 
number of 
consecutive 
consonants in the 
domain 

    X     0 

30 VowelSequence 

The maximum 
number of 
consecutive vowels 
in the domain 

    X     0 

31 NumericSequence 

The maximum 
number of 
consecutive 
numerics in the 
domain 

    X     0 

32 SpecialCharSequence 

The maximum 
number of 
consecutive special 
characters in the 
domain 

    X     0 
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33 DomainLength 
The length of the 
domain 

    X     N/A 

34 Class 

The class of the 
domain (malicious 
= 0 and non-
malicious = 1) 

    X     N/A 
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Table 2: Values description for enumeration features where X denotes all possible values 
 

S.no Feature Values description 

1 CreationDate Without data = 0 

Until one month = 1 

Until six months = 2 

2 LastUpdateDate Until one year = 3 

After one year = 4 

3 HttpResponseCode Without data = 0 

1XX response = 1 

2XX response = 2 

3XX response = 3 

4XX response = 4 

5XX response = 5 
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